

B-Plan 107, Bad Oldesloe

Kurzbericht Zwischenergebnisse technische Detailerkundungen Teilfläche 8, B-Planverfahren 107

Auftraggeber: Stadt Bad Oldesloe

Planung und Umwelt Stadthaus, Am Markt 5

D - 23843 Bad Oldesloe

Auftragsdatum: 11.11.2011

Bestellnummer: 51100/5431000

Berichtsnummer: 438-11

Berichtsumfang: 24 Seiten mit 9 Anlagen

Exemplar: 1 von 2, Verbleib beim Auftraggeber

Datum: Hamburg, den 26. Juni 2012

Inh	altsverzeichnis:	Seite:
1.	Veranlassung	4
2. 2.1.	Allgemeines und Untersuchungsumfang Allgemeines	5
2.2. 2.3.	Unterteilung der Teilflächen	5 5 6
2.4.	Untersuchungsumfang Teilfläche 8	6
3.1. 3.2. 3.3.	Einzelprobenentnahmen Bereich TF 8	8 8 8 9
4.1. 4.2. 4.3. 4.4.	Analysenergebnisse Bodeneinzelproben TF 8 Analysenergebnisse Oberbodenmischproben	12 12 13 16
5.1. 5.2. 5.3. 5.4.	Oberbodenmischproben (ohne Trichter) TF 8 hinsichtlich BBodSchV Bodenmaterial Trichterverfüllung	17 17 18 18 19
6.	Empfehlungen zur weiteren Vorgehensweise Teilfläche 8	20
7.	Zusammenfassung	21
Liter	raturverzeichnis	22
Abki	ürzungsverzeichnis	24

Anlagenverzeichnis:

Anlage 10:

Anlage 1:	Lagepläne	
Anlage 1.4:	Teilflächen Oberbodenmischproben, M 1: 1.000	
Anlage 1.5:	Lageplan Ansatzpunkte HDB mit Bodenanalytik, M 1: 1.000	
Anlage 1.6:	Lageplan Ansatzpunkte HDB mit Analysenergebnissen Eluat-	und
	Wasseruntersuchungen, M 1: 1.000	
Anlage 1.7:	Lageplan Kampfmittelerkundung, M 1 : 1.000	
Anlage 2:	Fotodokumentation	
Anlage 3:	Schichtenverzeichnisse Handdrehbohrungen	
Anlage 4:	Bodenprofile und Ausbauzeichnungen Handrehbohrungen	
Anlage 5:	Nivellement	
Anlage 6:	Probenentnahmeprotokolle Oberbodenmischproben	
Anlage 8:	Chemische Analysenergebnisse, GBA Gesellschaft für Bioanalytik mbH	
Anlage 8.1:	Oberbodenmischproben	
Anlage 8.2:	Bodeneinzelproben	
Anlage 8.7:	Bodeneinzelproben / Bodenmischproben Überprüfung Bombentrichter	
Anlage 9:	Protokolle Überprüfung Bombentrichter	

Probenahmeprotokolle Mischproben Bombentrichter

SEITE 4 VON 24 DES BERICHTES 438-11 VOM 26. JUNI 2012

KURZBERICHT TEILFLÄCHE 8, B-PLAN 107, BAD OLDESLOE

1. Veranlassung

Für die Bauleitplanung, B-Plan 107, Bad Oldesloe, waren zusätzliche Detailerkundungen erforderlich, um potenzielle Gefährdungen für die städtebauliche Planung abschließend bewerten zu können.

Die GeoConsult Hamburg GbR wurde mit Bestellnummer 51100/5431000 von der Stadt Bad Oldesloe, Planung und Umwelt, mit der Durchführung der erforderlichen Detailerkundungen beauftragt. Grundlage hierfür bildeten die Angebote 438-11 vom 17.10.2011, 438-11-A vom 28.10.2011 sowie 438-11-B vom 22.02.2012.

Im Bereich der Teilfläche 8 des Untersuchungsgebietes sollte nach Vorlage der Ergebnisse des ersten Untersuchungsschrittes in einem zweiten Untersuchungsschritt eine Kontrolle der Verfüllung der Bombentrichter erfolgen. Es sollte hiermit überprüft werden, ob in diese Hohlformen nach Kriegsende militärische und / oder umweltrelevante Altlasten eingelagert worden sind. Im Rahmen dieser Arbeiten wurden am 04.06. und 05.06.2012 sowohl militärische als auch umweltrelevante Altlasten nachgewiesen. Die Arbeiten wurden daraufhin auf Grund der ungeklärten Entsorgungswege des verunreinigten Bodenaushubs am 05.06.2012 unterbrochen.

Am 06.06.2012 wurde im Rahmen einer Besprechung vor Ort mit dem Auftraggeber vereinbart, dass die bislang vorliegenden Untersuchungsergebnisse zur Teilfläche 8 im Rahmen eines Kurzberichtes als Grundlage zur gemeinsamen Festlegung der weiteren Vorgehensweise zusammengestellt werden sollen.

Die Ergebnisse der bislang im Bereich der Teilfläche 8 durchgeführten Untersuchungen werden im vorliegenden Kurzbericht dargelegt und bewertet. Des Weiteren werden Hinweise für die weitere Vorgehensweise ausgesprochen.

2. Allgemeines und Untersuchungsumfang

2.1. Allgemeines

In diesem Kurzbericht werden die Ergebnisse der bislang im Bereich der Teilfläche 8 durchgeführten Untersuchungen kurz beschrieben und bewertet.

Eine ausführliche Aufbereitung der Daten sowie weiterführende Detailangaben zur Hydrogeologie, Geologie, Bewertungsgrundlagen etc. wird in dem noch zu erstellenden, abschließenden Gesamtbericht [17] zusammengestellt, auf welchen an dieser Stelle verwiesen sei.

2.2. Unterteilung der Teilflächen

Im Rahmen der Voruntersuchungen wurden acht verschiedene Teilflächen ausgewiesen:

Abbildung 1: Übersicht über das Untersuchungsgebiet und die Abgrenzungen der Teilflächen

2.3. Nutzung der Teilfläche 8

Nachfolgend werden stichpunktartig einige wesentliche Punkte zur Nutzung der Teilfläche 8 aufgelistet.

Der Bereich Teilfläche 8 befindet sich westlich der Wohnbebauung: Grün- und Brachfläche, wobei eine unmittelbare Nutzung der Teilfläche durch die Farbenfabrik aus den vorhandenen Unterlagen nicht abzuleiten ist / war.

2.4. Untersuchungsumfang Teilfläche 8

Für die Teilfläche 8 war der nachfolgend aufgeführte Untersuchungsumfang (1. Untersuchungsschritt) vorgesehen:

<u>Fragestellung:</u> Detailerkundungen des Oberbodens und Detailerkundungen der vertikalen Schadstoffverteilung sowie des Gefährdungspfades Grundwasser.

<u>Untersuchungsumfang:</u> Erkundung mittels fünf Handdrehbohrungen im Bereich der Teilfläche, Einzelprobenentnahmen, Mischprobenentnahme von fünf Oberbodenmischproben gemäß BBodSchG und chemische Analytik.

Nach Abschluss des 1. Untersuchungsschrittes wurden entsprechende Ergänzungen des Untersuchungsumfanges (2. Untersuchungsschritt) in Abstimmung mit dem Auftraggeber (Besprechung am 12.02.2012) erforderlich.

<u>Fragestellung:</u> Die Verfüllung der Bombentrichter war vorab im Hinblick auf militärische Altlasten / Kampfmittel sowie umweltrelevante Verunreinigungen zu überprüfen.

Hierfür wurde die folgende Vorgehensweise abgestimmt:

Anfrage beim Kampfmittelräumdienst (KMRD) zwecks Luftbildauswertung und Lokalisierung der Bombentrichter (Hoch- und Rechtswerte).

Im Anschluss lagemäßige Einmessung der Trichter im Gelände.

Öffnen der Trichter mittels Anlage von kreuzförmig angelegten Suchgräben unter Aufsicht des KMRD und des Fachgutachters.

Überprüfung der Trichterverfüllung im Hinblick auf Kampfmittel und umweltrelevante Belastungen.

SEITE 7 VON 24 DES BERICHTES 438-11 VOM 26. JUNI 2012

KURZBERICHT TEILFLÄCHE 8, B-PLAN 107, BAD OLDESLOE

Freimessen der Sohlen durch den KMRD hinsichtlich des Kampfmittelverdachtes sowie Beprobungen der Sohlen und chemische Analytik durch den Fachgutachter hinsichtlich Untergrundverunreinigungen.

Beim Antreffen von Verunreinigungen Separierung, seitliche Lagerung des Materials und Beprobung des Verfüllmaterials, chemische Analytik von Einzel- und Mischproben sowie Entsorgung des Materials.

Überwachung, Abnahme und Dokumentation der Arbeiten durch einen Sachverständigen gem. § 18, BBodSchG.

3. Untersuchungsmaßnahmen

3.1. Oberbodenmischprobenentnahmen gem. BBodSchV

Im Vorwege der Oberbodenmischprobenentnahmen wurden die Teilflächen 5 und 6 in jeweils zwei Beprobungsteilflächen sowie die Teilfläche 8 in fünf Beprobungsteilflächen unterteilt (siehe Anlage 1.4). Die Unterteilung wurde auf Grund der örtlichen Gegebenheiten vorgenommen.

Die Oberbodenmischprobenentnahmen fanden am 12.12. und 14.12.2011 statt. Die entsprechenden Mischprobenentnahmeprotokolle liegen als Anlage 6 diesem Bericht bei, auf welche an dieser Stelle für Detailfragen verwiesen wird.

Für die Oberbodenmischprobenentnahmen wurde im vorliegenden Falle, abweichend von den Vorgaben den BBodSchV, auf Grund der in den meisten Teilflächen erfolgten zeitweisen Bewirtschaftung sowie der Vermischung durch Grab- und Wühltätigkeiten, Oberbodenmischproben aus den für den Gefährdungspfad direkter Kontakt relevanten Horizonten, 0,0 m - 0,35 m, entnommen. Auf den Teilflächen wurden jeweils 20 Einstiche bis 35 cm unter GOK ausgeführt und insgesamt 10 repräsentative Oberbodenmischproben, davon fünf im Bereich der Teilfläche 8, entnommen.

Aus jedem Einstich wurde eine aliquote Menge entnommen und der Mischprobe zugeführt (Menge insgesamt ca. 8 kg). Die Homogenisierung der Mischprobe erfolgte im Labor vor der chemischen Analytik.

3.2. Einzelprobenentnahmen Bereich TF 8

Zur Erkundung des Untergrundes und ergänzenden Bodenprobenentnahmen wurden am 12.12. und 14.12.2011 insgesamt fünf Handdrehbohrungen bis in maximale Tiefen von ca. 1,0 m unter GOK durch Mitarbeiter unseres Hauses auf der Fläche abgeteuft. Dem Mitarbeiter oblagen auch die kornanalytische und organoleptische Ansprache sowie die Probenentnahmen. Es wurden hierbei schichtbezogen Bodeneinzelproben für die weiteren Untersuchungen entnommen.

SEITE 9 VON 24 DES BERICHTES 438-11 VOM 26. JUNI 2012

KURZBERICHT TEILFLÄCHE 8, B-PLAN 107, BAD OLDESLOE

Die Lage aller Bohransatzpunkte ist der Anlage 1.5 zu entnehmen. Die Schichtenverzeichnisse gemäß DIN 4022 [2] und die Bohrprofile gemäß DIN 4023 [3] der Handdrehbohrungen sind aus den Anlagen (siehe Anlage 3 und Anlage 4) ersichtlich, welchen auch die Probenentnahmetiefen und -kennzeichnung zu entnehmen sind.

3.3. Überprüfung der Bombentrichter

Im Rahmen der Ortstermine am 04.06. und 05.06.2012 wurde begonnen, die ehemaligen Bombentrichter im Bereich der Teilfläche 8 zu öffnen. Die Arbeiten wurden durch Mitarbeiter des Kampfmittelräumdienstes von Schleswig-Holstein durchgehend überwacht.

Die fachtechnische Überwachung aus umwelttechnischer Sicht erfolgte durch einen Mitarbeiter unseres Hauses, welchem auch die kornanalytische und organoleptische Ansprache sowie die Probenentnahmen oblagen.

Nachfolgend werden die Ergebnisse der bislang durchgeführten Trichteröffnungen stichpunktartig beschrieben (siehe auch Fotodokumentation in Anlage 2, Protokolle Überprüfung Bombentrichter in Anlage 9 sowie Probenahmeprotokolle Mischproben aus den Bombentrichtern in Anlage 10):

Trichter 11:

Untergrundaufbau: unterhalb einer ca. 0,2 m bis 0,3 m mächtigen Mutterbodenauflage wurde bis ca. 0,6 m unter GOK ein aufgefüllter Geschiebeboden mit Ziegel- und Betonresten angetroffen.

Im Liegenden wurde der "alte" Mutterbodenhorizont angetroffen, in welchem bereits lokal Farbpigmentreste (<u>Probe 1</u> und <u>Probe 2</u>, aus <u>Trichter 11</u>) eingelagert worden waren, aufgeschlossen. Daneben war lokal die Trichterverfüllung mit Aschen, Schlacke und Metallresten etc. erkennbar.

<u>Vorgehensweise:</u> Rückverfüllung des geöffneten Bereiches auf Grund des flächigen Auftretens von Kontaminationen mit Farbpigmentresten.

Trichter 12:

Untergrundaufbau: unterhalb einer ca. 0,2 m bis 0,3 m mächtigen Mutterbodenauflage war bis ca. 1,5 m unter GOK im Bereich des Trichters ein sensorisch unauffälliger Geschiebeboden wieder eingebaut worden.

Freimessung und Freigabe der Baugrubensohle durch den KMRD.

Sohlbeprobung durch den Fachgutachter (<u>Probe Sohle Trichter 12</u>) und Freigabe zur Rückverfüllung.

Trichter 13 bis Trichter 15:

Trichter befinden sich im Bereich des Knicks. Nach Rücksprache mit dem AG erfolgte die Rückstellung dieser Arbeiten bis zum Herbst. Dann werden der Knick bereichsweise frei geschnitten und die Trichter geöffnet.

Trichter 16:

Untergrundaufbau: unterhalb einer ca. 0,2 m bis 0,3 m mächtigen Mutterbodenauflage waren bis ca. 3,0 m unter GOK im Bereich des Trichters sensorisch auffällige Böden wieder eingebaut worden.

Trichterverfüllung mit Geschiebeboden, welcher lokal Farbpigmentreste (<u>Probe 1</u> und <u>Probe 2</u>, <u>Trichter 16</u>) enthielt. Daneben waren u.a. Metallreste, Fassreste, Töpfe, Eimer sowie Glasflaschen in der Auffüllung enthalten. Das sensorisch auffällige Material wurde separiert und seitlich aufgehaldet.

In einer Tiefe von ca. 3,0 m unter GOK wurde ein grau gefärbter, wasserhaltiger sandiger Geschiebeboden angetroffen. Hierbei handelt es sich vermutlich um die ehemalige Sohle des Bombentrichters, welcher anscheinend zeitweise mit Wasser teilgefüllt war. In dieser Lage wurden die Kampfmittelfunde (Handgranate, Munition, Bajonett etc.) angetroffen. Die Beräumung der Kampfmittel erfolgte durch den KMRD.

Freigabe der Baugrubensohle durch den KMRD.

Sohlbeprobung durch den Fachgutachter (<u>Probe Sohle Trichter 16</u>) und Freigabe zur Rückverfüllung mit dem separierten, sensorisch unauffälligen Material (Mischprobenbezeichnung: <u>MP 1</u>, <u>Trichter 16</u>).

SEITE 11 VON 24 DES BERICHTES 438-11 VOM 26. JUNI 2012

KURZBERICHT TEILFLÄCHE 8, B-PLAN 107, BAD OLDESLOE

Zur Sicherung des kontaminierten Materials bis zur Bodenabfuhr: technische Sicherung eines Teilbereiches des Trichters durch Auslegen mit Folie. Anschließend Wiedereinbau des kontaminierten Materials, Abdeckung mit Folie und Sicherung des Bereiches mit einem Bauzaun gegen den Zutritt Unbefugter.

Beprobung des kontaminierten Materials (Mischprobenbezeichnung: MP 2, Trichter 16 und 17) und Durchführung der Deklarationsanalytik.

Trichter 17:

Untergrundaufbau: unterhalb einer ca. 0,2 m bis 0,3 m mächtigen Mutterbodenauflage waren bis ca. 2,3 m unter GOK im Bereich des Trichters sensorisch auffällige Böden wieder eingebaut worden.

Trichterverfüllung mit Geschiebeboden, welcher lokal Farbpigmentreste (Probe 1 und Probe 2, aus Trichter 17) enthielt. Daneben waren u.a. Metallreste, Glasflaschen, Kabelreste, Dachpappen, Stecker, Lautsprecher, Bombensplitter etc. in der Auffüllung enthalten. Das sensorisch auffällige Material wurde separiert und ebenfalls im Bereich des Trichters 16 zusammen mit dem kontaminierten Material technisch gesichert wieder eingebaut.

Freimessung und Freigabe der Baugrubensohle durch den KMRD.

Sohlbeprobung durch den Fachgutachter (Probe <u>Sohle Trichter 17</u>) und Freigabe zur Rückverfüllung.

Trichter 18:

Untergrundaufbau: unterhalb einer ca. 0,2 m bis 0,3 m mächtigen Mutterbodenauflage wurde hier ein aufgefüllter Geschiebeboden mit Ziegel- und Betonresten angetroffen, in welchem bereits lokal Farbpigmentreste eingelagert worden waren.

Auf Grund der wiederholt angetroffenen Kontaminationen wurden in Rücksprache mit allen Beteiligten die Arbeiten bis zur Klärung der weiteren Vorgehensweise, insbesondere der Sicherung des kontaminierten Materials sowie der Entsorgungswege, vorübergehend eingestellt.

4. Chemische Analytik und Analysenergebnisse

4.1. Untersuchungsumfang

Die <u>Bodeneinzelproben</u> wurden kühl gelagert und nach der Probenansprache in unserem Hause dem chemischen Labor GBA Gesellschaft für Bioanalytik mbH, Pinneberg, zur Analytik übergeben. Der Untersuchungsumfang der Bodeneinzelproben ist in nachfolgender Tabelle 1 aufgeführt.

Tabelle 1: Analysenumfang Bodeneinzelproben TF 8

Probe		Feststoff	•		Eluat				
	pН	SM + As	Cyanid	pН	SM + As	Cyanid	pH-stat		
HDB 8-1, 1	X	X	X	X	X	X			
HDB 8-1, 2	X	X	X						
HDB 8-2, 1	X	X	X	X	X	X			
HDB 8-2, 2	X	X	X						
HDB 8-3, 1	X	X	X	X	X	X			
HDB 8-3, 2	X	X	X						
HDB 8-4, 1	X	X	X						
HDB 8-4, 2	X	X	X	X	X	X			
HDB 8-5, 1	X	X	X	X	X	X			
HDB 8-5, 2	X	X	X						
Probe 1, Trichter 11		X	X						
Probe 2, Trichter 11		X	X						
Sohle, Trichter 11		X	X						
Sohle, Trichter 12		X	X						
Probe 1, Trichter 16		X	X						
Probe 2, Trichter 16		X	X						
Sohle Trichter 16		X	X						
Probe 1, Trichter 17		X	X						
Probe 2, Trichter 17		X	X						
Sohle Trichter 17		X	X						

Die <u>Oberbodenmischproben</u> wurden direkt nach den Probenahmen dem oben genannten Labor übergeben. Der Untersuchungsumfang der Oberbodenmischproben ist in nachfolgender Tabelle 2 aufgeführt.

Tabelle 2: Analysenumfang Oberbodenmischproben TF 8

Probe	Feststoff					
	pН	SM + As	Cyanid			
MP 8-1	X	X	X			
MP 8-2	X	X	X			
MP 8-3	X	X	X			
MP 8-4	X	X	X			
MP 8-5	X	X	X			

Die im Rahmen der Überprüfung der Bombentrichter entnommene Bodenmischprobe MP 1, Trichter 16, wurde zur Kontrolle der Wiedereinbaufähigkeit auf die Parameter Schwermetalle und Arsen sowie Cyanid im Feststoff untersucht.

Die Bodenmischprobe MP 2, Trichter 16+17 wurde zur Deklaration des Aushubmaterials im Vorwege der Entsorgung auf die Parameterumfänge LAGA-Boden sowie die Erweiterung gemäß DepV analysiert.

Die Untersuchungsbefunde liegen diesem Bericht als Anlage 8 bei, welcher auch die jeweiligen Bestimmungsmethoden und Nachweisgrenzen zu entnehmen sind. Für Detailfragen sei an dieser Stelle auf die entsprechenden Einzelbefunde verwiesen.

4.2. Analysenergebnisse Bodeneinzelproben TF 8

Die Ergebnisse der chemischen Untersuchungen der Bodeneinzelproben aus den Handdrehbohrungen, der Sohlbeprobungen der Trichter und der Mischprobe des wiedereingebauten Materials im Bereich des Trichters 16 sind zur besseren Übersicht und Dokumentation in den nachfolgenden Tabelle 3 (Feststoffuntersuchungen) und Tabelle 4 (Eluatuntersuchungen) aufgelistet:

Tabelle 3: Analysenergebnisse chemische Analytik der Bodeneinzelproben (Feststoffuntersuchungen) [mg/kg TM]

Probe	Ent- nahme- tiefe [m u. GOK]	pН	As	Pb	Cd	Cr _{ges}	Cu	Ni	Hg	Zn	CN _{ges}
HDB 8-1, 1	0,00 - 0,25	5,7	5,5	36	0,35	22	22	9,2	0,11	111	<1,0
HDB 8-1, 2	0,25 - 0,70	6,1	5,9	20	0,14	23	15	12	<0,10	61	<1,0
HDB 8-2, 1	0,00 - 0,40	5,5	7,9	88	0,41	36	22	9,8	<0,10	156	<1,0
HDB 8-2, 2	0,40 - 0,70	5,9	6,5	39	0,22	22	16	8,9	<0,10	73	<1,0
HDB 8-3, 1	0,00 - 0,35	5.6	8,1	23	0,30	23	18	11	<0,10	76	<1,0
HDB 8-3, 2	0,35 - 0,60	6,0	7,2	20	0,14	25	16	13	<0,10	57	<1,0
HDB 8-4, 1	0,00 - 0,35	6,2	5,7	29	0,41	18	19	8,0	<0,10	80	<1,0
HDB 8-4, 2	0,35 - 0,60	6,1	6,7	28	0,34	24	20	11	<0,10	77	<1,0
HDB 8-5, 1	0,00 - 0,35	5,0	5,5	26	0,33	19	19	9,0	<0,10	66	<1,0
HDB 8-5, 2	0,35 - 0,70	5,3	6,1	22	0,35	21	17	10	<0,10	56	<1,0
Trichter 12, Sohle	1,5 - 1,7	n.g.	6,6	20	0,13	41	18	20	<0,10	68	<1,0
Trichter 16, Sohle	3,3 - 3,5	n.g.	5,9	30	0,18	36	17	21	<0,10	65	0,19
Trichter 17, Sohle	2,5 - 2,6	n.g.	7,7	30	0,18	33	16	17	<0,10	65	<1,0
Trichter 16, MP 1		n.g.	6,8	23	0,20	27	17	16	<0,10	60	1,9

Überschreitung der jeweiligen Vorsorgewerte der BBodSchV durch **Fettdruck** gekennzeichnet, wobei in Abhängigkeit vom jeweiligen pH-Wert die Vorsorgewerte für die Bodenarten Lehm/Schluff oder Ton gelten

Tabelle 4: Analysenergebnisse chemische Analytik der Bodeneinzelproben aus TF 8 (Eluatuntersuchungen) [μg/l]

Probe	Ent- nahme- tiefe [m u. GOK]	pН	As	Pb	Cd	Cr _{ges}	Cu	Ni	Hg	Zn	CN _{ges}
HDB 8-1, 1	0,00 - 0,25	6,4	1,8	<1,0	<0,3	<1,0	13	3,0	<0,2	32	<5,0
HDB 8-2, 1	0,00 - 0,40	6,4	2,2	2,7	<0,3	1,6	22	1,5	<0,2	13	<5,0
HDB 8-3, 1	0,00 - 0,35	5,9	2,7	<1,0	<0,3	<1,0	19	1,4	<0,2	<10	<5,0
HDB 8-4, 2	0,35 - 0,60	6,1	1,7	<1,0	<0,3	<1,0	12	<1,0	<0,2	<10	7,0
HDB 8-5, 1	0,00 - 0,35	5,0	1,6	3,2	<0,3	<1,0	12	1,4	<0,2	<10	<5,0

Überschreitung des Geringfügigkeitsschwellenwertes der LAWA 2004 durch Fettdruck gekennzeichnet

In der Tabelle 5 sind die Analysenergebnisse aus dem Material der Trichterverfüllungen aufgelistet.

Tabelle 5: Analysenergebnisse chemische Analytik Einzelproben Trichterverfüllung (Feststoffuntersuchungen) [mg/kg TM]

Probe	Ent- nahme- tiefe [m u. GOK]	рН	As	Pb	Cd	Cr _{ges}	Cu	Ni	Hg	Zn	CN _{ges}
Trichter 11, Probe 1	0,6 - 0,7	n.g.	10	11.100	4,6	2.750	63	19	0,83	3.650	286
Trichter 11, Probe 2	0,6 - 0,7	n.g.	17	3.640	1,5	263	129	74	0,56	3.280	151
Trichter 16, Probe 1		n.g.	10	7.650	2,3	998	161	16	0,44	7.660	1.678
Trichter 16, Probe 2		n.g.	10	82.900	3,1	1.160	305	12	0,34	2.700	1.074
Trichter 17, Probe 1	0,4 - 0,5	n.g.	7,8	2.000	0,42	476	681	13	0,38	741	407
Trichter 17, Probe 2	0,4 - 0,5	n.g.	5,7	14.400	9,3	4.360	43	11	0,19	11.800	2.815

Überschreitung der jeweiligen Vorsorgewerte der BBodSchV Bodenart Lehm/Schluff durch **Fettdruck** bzw. Überschreitung der jeweiligen Vorsorgewerte Bodenart Ton durch **Fettdruck in Rot** gekennzeichnet

4.3. Analysenergebnisse Oberbodenmischproben

Die Ergebnisse der chemischen Untersuchungen der Oberbodenmischproben sind zur besseren Übersicht und Dokumentation in der nachfolgenden Tabelle 6 aufgelistet:

Tabelle 6: Analysenergebnisse chemische Analytik der Oberbodenmischproben TF 8 (Feststoffuntersuchungen) [mg/kg TM]

Probe	Ent- nahme- tiefe [m u. GOK]	рН	As	Pb	Cd	Cr _{ges}	Cu	Ni	Hg	Zn	CN _{ges}
MP 8-1	0,0 - 0,35	6,7	6,7	59	0,34	29	26	12	<0,1	123	<1,0
MP 8-2	0,0 - 0,35	6,1	7,7	81	0,33	23	23	10	<0,1	111	<1,0
MP 8-3	0,0 - 0,35	6,1	7,7	33	0,33	28	20	10	<0,1	90	<1,0
MP 8-4	0,0 - 0,35	6,1	6,6	26	0,62	19	21	8,8	<0,1	91	<1,0
MP 8-5	0,0 - 0,35	6,5	6,9	27	0,33	23	17	9,8	<0,1	62	<1,0

4.4. Analysenergebnisse Entsorgung Material Bombentrichter

Für die Bewertung der Ergebnisse der Bodenmischprobe aus dem separierten, sensorisch auffälligen Material der Trichterverfüllungen der Bombentrichter 16 und 17 (Mischprobenbezeichnung: MP 2, Trichter 16+17) werden nachfolgend die "Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen / Abfällen" der Länderarbeitsgemeinschaft Abfall (LAGA-Boden), Stand 2004 [7] zu Grunde gelegt.

Tabelle 7: Zusammenstellung für die Verwertung / Entsorgung relevanter Analysenergebnisse: MP 2, Trichter 16+17

Parameter	Einheit	MP 2, Trichter 16+17
Cyanid	mg/kg TM	8,7
Summe PAK	mg/kg TM	10,2
Blei	mg/kg TM	310
Einstufung LAG	A-Kategorie	Z 2
		gemäß LAGA-Boden

5. Bewertung der Untersuchungsergebnisse

5.1. Bodeneinzelproben (ohne Trichter) hinsichtlich BBodSchV

Die analysierten Gehalte der Bodeneinzelproben im **Feststoff** für die Parameter Chrom, Kupfer, Nickel und Quecksilber unterschreiten in allen untersuchten Bodeneinzelproben den jeweiligen Vorsorgewert gem. BBodSchV (Bodenarten in Abhängigkeit vom jeweiligen pH-Wert: Lehm / Schluff bzw. Sand) und zeigen somit einen insgesamt unauffälligen Befund.

Für die Schadstoffparameter Blei und Cadmium wurde an einer Bodenprobe (HDB 8-2-1) der jeweilige Vorsorgewert gem. BBodSchV (Bodenarten in Abhängigkeit vom jeweiligen pH-Wert: Lehm / Schluff bzw. Sand) geringfügig überschritten. In allen anderen untersuchten Bodeneinzelproben lagen die Gehalte unterhalb der jeweiligen Vorsorgewerte gem. BBodSchV (Bodenarten in Abhängigkeit vom jeweiligen pH-Wert: Lehm / Schluff bzw. Sand) und zeigen somit einen insgesamt unauffälligen Befund.

Für den Schadstoffparameter Zink wird in fünf der 10 untersuchten Bodenproben der jeweilige Vorsorgewert gem. BBodSchV (Bodenarten in Abhängigkeit vom jeweiligen pH-Wert: Lehm / Schluff bzw. Sand) geringfügig überschritten. In allen anderen untersuchten Bodeneinzelproben lagen die Gehalte unterhalb des jeweiligen Vorsorgewertes gem. BBodSchV (Bodenarten in Abhängigkeit vom jeweiligen pH-Wert: Lehm / Schluff bzw. Sand) und zeigen somit einen insgesamt unauffälligen Befund.

Legt man für den Parameter Arsen in Ermangelung des Vorhandenseins eines Vorsorgewertes als Bewertungsgrundlage den im Hinblick auf den sensibelsten Pfad "direkter Kontakt" (Kinderspielflächen) gültigen Prüfwert (25 mg/kg TM) zu Grunde, so wird dieser Wert in allen untersuchten Bodeneinzelproben deutlich unterschritten.

Cyanidges, konnte in keiner der untersuchten Bodeneinzelproben nachgewiesen werden.

Die Konzentrationen an Schwermetallen, Arsen und Cyanid in den **Eluaten**, welche jeweils aus der am stärksten belasteten Bodeneinzelprobe von jedem Aufschluss angefertigt wurden, zeigen keine Überschreitungen der jeweiligen Prüfwerte für Sickerwasser (Wirkungspfad Boden - Grundwasser) der BBodSchV. Lediglich in den Proben HDB 8-2-1 und HDB 8-3-1 wird der Geringfügigkeitsschwellenwert gemäß LAWA 2004 für den Parameter Kupfer überschritten.

5.2. Oberbodenmischproben (ohne Trichter) TF 8 hinsichtlich BBodSchV

Es wurden in keiner der im Hinblick auf den Gefährdungspfad direkter Kontakt untersuchten fünf Oberbodenmischproben der Teilfläche 8 (MP 8-1 bis MP 8-5) Überschreitungen der entsprechenden Prüfwerte für den sensibelsten Pfad direkter Kontakt (Kinderspielflächen) der hier untersuchten Einzelparameter nachgewiesen.

5.3. Bodenmaterial Trichterverfüllung

Die sechs Bodeneinzelproben aus dem <u>sensorisch auffälligen Material der Trichterverfüllungen (Trichter 11, 16 und 17)</u> weisen deutlich erhöhte Gehalte an Schwermetallen und Cyanid auf. Das Schadstoffspektrum mit vornehmlich Blei, Chrom und Zink sowie Cyanid ist vergleichbar mit dem Schadstoffspektrum der Ablagerungen im Bereich des ehemaligen Schlammteiches, Teilfläche 5 (siehe auch [17]). Auf Grund der räumlichen Nähe zu dem Standort der Farbwerke Folkens, dem vergleichbaren Schadstoffspektrum des Materials (Trichterverfüllung / Schlammteich) sowie der sensorischen Ansprache (vermutlich Farbpigmente) können die Verunreinigungen mit hoher Wahrscheinlichkeit den ehemaligen Farbwerken Folkens zugeordnet werden.

Auf Grund der nachgewiesenen Verunreinigungen sind Trichterverfüllungen mit diesem Material im Vorwege einer Bebauung, wie bereits für die Trichterverfüllungen Trichter 16 und 17 (MP 2, Trichter 16+17) erfolgt, fachgerecht zu separieren und zu entsorgen.

SEITE 19 VON 24 DES BERICHTES 438-11 VOM 26. JUNI 2012

KURZBERICHT TEILFLÄCHE 8, B-PLAN 107, BAD OLDESLOE

Die Untersuchungsergebnisse der <u>drei Bodeneinzelproben der Sohlbeprobungen</u> aus dem Bereich der Baugrubensohlen der geöffneten und beräumten Trichter 12, Trichter 16 und Trichter 17 zeigen mit Schadstoffgehalten unterhalb der jeweiligen Vorsorgewerte gem. BBodSchV (Bodenart: Lehm / Schluff) einen insgesamt unauffälligen Befund. Der Bereich dieser Trichter kann somit als saniert angesehen werden.

Die Ergebnisse des separierten, sensorisch unauffälligen Bodenaushubmaterails, welches im Trichter 16 im Rahmen der Arbeiten direkt wieder eingebaut worden war, zeigt mit Schadstoffgehalten unterhalb der jeweiligen Vorsorgewerte gem. BBodSchV (Bodenart: Lehm / Schluff) einen insgesamt unauffälligen Befund. Die chemischen Analysen haben die Ergebnisse der sensorischen Ansprache vor Ort bestätigt und das Material kann somit im Trichter verbleiben.

5.4. Zusammenfassende Kurzbewertung

Die Ergebnisse der Mischproben der Oberbodenuntersuchungen sowie der Untersuchungen der exemplarisch tiefer geführten Aufschlüsse im Bereich der Teilfläche 8 zeigen weder aus Sicht des Bundesbodenschutzes noch aus Sicht des Grundwasserschutzes relevante Belastungen für die untersuchten Schadstoffparameter. Die geringfügigen Überschreitungen einzelner Vorsorgewert sind tolerierbar und bedürfen keiner weiteren Maßnahmen.

Im Bereich der Trichterverfüllungen wurden jedoch u.a. Farbpigmentreste etc. mit deutlichen, referenzwertüberschreitenden Gehalten an Schwermetallen und Cyanid nachgewiesen. Im Bereich der Trichter 16 und Trichter 17 wurden diese Belastungen bereits separiert. Zumindest im Bereich der Trichter 11 und Trichter 18 wurden ebenfalls relevante Belastungen nachgewiesen.

Im Vorwege einer Bebauung wird daher empfohlen, alle Trichter vorab zu öffnen und zu überprüfen, ob militärische und / oder umweltrelevante Belastungen in diesen Bereichen vorhanden sind. In Abhängigkeit der Ergebnisse sind die belasteten Bereiche auszukoffern und das verunreinigte Materail fachgerecht zu entsorgen.

6. Empfehlungen zur weiteren Vorgehensweise Teilfläche 8

Hinsichtlich der weiteren Vorgehensweise wird empfohlen:

Gesamtfläche B-Plan Gebiet

Historische Recherche, i.e.S. Durchführung einer Luftbild- und Grundkartenauswertung zur Überprüfung, ob neben den Bombentrichtern ggf. weitere Hohlformen etc. im Untersuchungsgebiet erkennbar sind, die mit umweltrelevanten Stoffen verfüllt worden sein könnten.

Umfeld Trichter 11:

Eingrenzung der angetroffenen Bodenverunreinigungen mittels Handschürfen, Bodenprobenentnahmen und chemischer Analytik.

Zwischenauswertung der Ergebnisse und Festlegung der weiteren Vorgehensweise.

Verbliebene Bombentrichter:

Festlegung des Entsorgungsweges für das angetroffene kontaminierte Material.

Weiteres Vorgehen hinsichtlich des Öffnens der Trichter wie bisher, aber nach dem Öffnen erfolgt taggleich eine <u>direkte Abfuhr</u> von kontaminiertem Material zu einem Entsorgungsunternehmen (Bereitstellungsfläche oder Deponie).

Bereich Teilfläche 3 (Betonplatten):

Überprüfung der Frage, ob unterhalb der Betonplatten ebenfalls relevante Bodenbelastungen verblieben sind.

Erkundung mittels Betonkernbohrungen, Kleinrammbohrungen, Bodenprobenentnahmen und chemischer Analytik.

7. Zusammenfassung

Für die Bauleitplanung, B-Plan 107, Bad Oldesloe, waren zusätzliche Detailerkundungen erforderlich, um potenzielle Gefährdungen für die städtebauliche Planung abschließend bewerten zu können.

Der Bereich der Teilfläche 8 des Untersuchungsgebietes wurde daher hinsichtlich möglicherweise vorhandener Untergrundverunreinigungen untersucht. Es wurden insgesamt fünf Oberbodenmischproben entnommen, fünf Handdrehbohrungen abgeteuft sowie bislang fünf Bombentrichter geöffnet. Hierbei wurden Bodeneinzelproben entnommen sowie Bodenmischproben zusammengestellt und die Proben laboranalytisch auf relevante Schadstoffe untersucht.

Die Untersuchungsergebnisse der Oberbodenmischprobenentnahmen sowie der Handdrehbohrungen zeigten einen sowohl aus bodenschutzrechtlicher Sicht als auch aus Sicht des Grundwasserschutzes insgesamt unauffälligen Gesamtbefund.

In den Trichterverfüllungen von vier der bislang fünf geöffneten Bombentrichter wurden hingegen umweltrelevante Verunreinigungen und / oder militärische Altlasten nachgewiesen.

Der vorliegende Kurzbericht stellt die Untersuchungsergebnisse zur Teilfläche 8 zusammen. Es wurden Empfehlungen zur weiteren Vorgehensweise ausgesprochen.

Th. Schulze

Dr. U. Schinzel

SEITE 22 VON 24 DES BERICHTES 438-11 VOM 26. JUNI 2012

KURZBERICHT TEILFLÄCHE 8, B-PLAN 107, BAD OLDESLOE

Literaturverzeichnis

- [1] <u>DIN 4021</u>: Baugrund; Aufschluss durch Schürfe und Bohrungen sowie Entnahme von Proben. Normenausschuss Bauwesen (NABau) im DIN Deutsches Institut für Normung e.V., Ausgabe Oktober 1990.
- [2] <u>DIN 4022:</u> Baugrund und Grundwasser; Benennen und Beschreiben von Boden und Fels. -Normenausschuss Bauwesen (NABau) im DIN Deutsches Institut für Normung e.V., Ausgabe September 1987.
- [3] <u>DIN 4023:</u> Baugrund- und Wasserbohrungen, Zeichnerische Darstellung der Ergebnisse. Normenausschuss Bauwesen (NABau) im DIN Deutsches Institut für Normung e.V., Ausgabe März 1984.
- [4] <u>Bundes-Bodenschutz- und Altlastenverordnung.</u> Verordnung zur Durchführung des Bundes-Bodenschutzgesetzes vom 17.03.1998 (Bundes-Bodenschutz- und Altlastenverordnung, BBodSchV), Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit vom 16.07.1999.
- [5] <u>Ableitung von Geringfügigkeitsschwellen für das Grundwasser.</u> Länderarbeitsgemeinschaft Wasser LAWA vom Dezember 2004.
- [6] <u>Merkblatt Empfehlungen für die Erkundung, Bewertung und Behandlung von Grundwasserschäden.</u> Länderarbeitsgemeinschaft Wasser LAWA vom Januar 1994.
- [7] <u>Anforderungen an die stoffliche Verwertung von mineralischen Abfällen. Länderarbeitsgemeinschaft Abfall (LAGA)</u>, Stand 05.11.2004.
- [8] <u>Verordnung über Deponien und Langzeitlager (Deponieverordnung DepV)</u> Erlass der Bundesregierung nach Anhörung der beteiligten Kreise mit Zustimmung des Bundesrates, 27. April 2009.

Altunterlagen

- [9] Gutachten über die Ergebnisse der weiteren Bodenuntersuchungen im Bereich der Müllablagerung Kampstraße / Claudiusstraße in Bad Oldesloe im September 1992. Dr.-Ing. Slomka & Harder, Ingenieurbüro für Hydrogeologie, Hydrochemie und Umweltschutz GmbH 26.02.1993
- [10] Gutachten über die Ergebnisse der Bodenluft- und Bodenuntersuchungen im Bereich der Müllablagerung Kampstraße / Claudiusstraße in Bad Oldesloe im März 1992. Dr.-Ing. Slomka & Harder, Ingenieurbüro für Hydrogeologie, Hydrochemie und Umweltschutz GmbH 18.05.1992
- [11] <u>Bebauungsplan Nr. 74 in Bad Oldesloe, Teilfläche Grundstücksgesellschaft Claudiusstraße</u> <u>mbH, Sicherungs- und Sanierungskonzept.</u> Ingenieurgesellschaft Prof. Dipl.-Ing. Enders & Dipl.-Ing. Dührkop mbH, Bericht 962691A vom 06.03.1997.
- [12] Ökologische Voruntersuchungen B-Plan 74 (Kampstraße, Planteil).
- [13] <u>Zusammenstellung und Auswertung der vorliegenden Untersuchungsergebnisse zur ehemaligen Farbenfabrik Folkens in Bad Oldesloe.</u> Dr. Reinhard Wienberg in Zusammenarbeit mit Büro Prof. Dr. Harro Stolpe, 19.03.2002.

SEITE 23 VON 24 DES BERICHTES 438-11 VOM 26. JUNI 2012

KURZBERICHT TEILFLÄCHE 8, B-PLAN 107, BAD OLDESLOE

- [14] Projekt: 0197/2003, Bad Oldesloe, Kampstraße, ehemalige Farbenfabrik Folkens
 Grundwasser Gefährdungsabschätzung Boden- und Wasseruntersuchungen.
 Beratende
 Ingenieure und Geologen Rohde, Widell und Ziegenmeyer, Bericht vom 30.10.2004.
- [15] Projekt: 0172/2003, Bad Oldesloe, Kampstraße, ehemalige Farbenfabrik Folkens Kontaminationsuntersuchungen der Teilflächen 1 und 7. Beratende Ingenieure und Geologen Rohde, Widell und Ziegenmeyer, Bericht vom 27.11.2003.
- [16] <u>Geschichte des Schlammteiches der Farbwerke Folkens Kampstraße.</u> Stadt Bad Oldesloe, Bauamt, Umweltabteilung, Bericht vom 16.11.1988.
- [17] <u>B-Plan 107, Bad Oldesloe, Bericht zu den technischen Detailerkundungen im Rahmen des B-Planverfahrens 107.</u> GeoConsult Hamburg GbR, Bericht 438-11 in Vorbereitung.

Abkürzungsverzeichnis

u. GOK

unter Geländeoberkante

Allgeme	ine Abkürzungen	<u>Abkürz</u>	zungen Chemie
DOLL	7. 1 . 1 . Cu . Cu . 1		

BSU	Behörde für Stadtentwicklung und	As	Arsen
_	Umwelt	BTEX	einkernige aromatische
bzw.	beziehungsweise	_	Kohlenwasserstoffe
ca.	circa	C	Kohlenstoff
DEV	Deutsche Einheitsverfahren	Cd	Cadmium
DIN	Deutsches Institut für Normung	$\mathrm{CH_4}$	Methan
DN	Diameter Nominal (Nennweite von	Cl_2	Chlor
	Rohren)	CN	Cyanid
Dres.	Doctores	CO_2	Kohlenstoffdioxid
d.h.	das heißt	Cr	Chrom
etc.	et cetera	Cu	Kupfer
FHH	Freie und Hansestadt Hamburg	DCA	1,2-Dichlorethan
Gew. %	Gewichtsprozent	DCE	1,2-Dichlorethen, cis- oder trans-
GFSW	Geringfügigkeitsschwellenwerte der	DCM	Dichlormethan
	LAWA-Empfehlungen 2004	DDT	Dichlordiphenyltrichlorethan
HU 41	Institut für Hygiene und Umwelt	DIC	dissolved inorganic carbon (gelöster
i.d.R.	in der Regel		anorganischer Kohlenstoff)
LAGA	Länderarbeitsgemeinschaft Abfall	DOC	dissolved organic carbon (gelöster
LAWA	Länderarbeitsgemeinschaft Wasser		organischer Kohlenstoff)
n.g.	nicht gemessen	EPA	Environmental Protection Agency (US
n.n.	nicht nachweisbar		Umweltbehörde)
OEG	obere Explosionsgrenze	GC	Gaschromatographie
u.E.	unseres Erachtens	H_2	Wasserstoff
UEG	untere Explosionsgrenze	HCH	Hexachlorcyclohexan
Vol%	Volumen-Prozent	Hg	Quecksilber
Σ	Summe	HS	Headspace
		ICP	Inductively Coupled Plasma (induktiv
Abkürzung	gen Geologie / Hydrogeologie		gekoppeltes Plasma, chemisches
110110112011	Som Good Sid / 11/ Grog Solo Sid		Analysenverfahren)
BBodSchV	BundesBodenSchutz-Verordnung	LCKW	leichtflüchtige chlorierte
BBodSchG	BundesBodenSchutz-Gesetz		Kohlenwasserstoffe
BL	Bodenluftmesspunkt	LHKW	leichtflüchtige halogenierte
BS	Bohrsondierung		Kohlenwasserstoffe
DP	direct-push-Sondierung	MKW	Mineralölkohlenwasserstoffe
ENA	enhanced natural attenuation	MS	Massenspektrometrie
LIVA	(verstärkter natürlicher Abbau)	Ni	Nickel
GOK	Geländeoberkante	O_2	Sauerstoff
GWL	Grundwasserleiter	PAK	polyzyklische aromatische
GWL	Grundwassermessstelle		Kohlenwasserstoffe
kf		Pb	Blei
KRB	hydraulischer Durchlässigkeitsbeiwert Kleinrammbohrung	PCB	polychlorierte Biphenyle
MNA	monitored natural attenuation	PCE	1,1,2,2-Tetrachlorethen ("Per",
MINA	(kontrollierter natürlicher Abbau)	1 02	Perchlorethen)
MP		PCP	Pentachlorphenol
	Messpunkt Normal Null	PVC	Polyvinylchlorid
NN NA		TCE	1,1,2-Trichlorethen (,,Tri",
NA	natural attenuation (natürlicher Abbau)	102	Trichlorethen)
RKS	Rammkernsondierung	TCM	Trichlormethan
SHW	Sondierung mit horizontierter	TOC	total organic carbon (gesamter
CWM	Wasserprobenahme	100	organischer Kohlenstoff)
SWM	Stauwassermessstelle	VC	Vinylchlorid, (Mono-)Chlorethen
SWL	Stauwasserleiter	Zn	Zink
T	Transmissivität	ZII	Ziiik

Teilfläche Oberbodenmischproben

<u>Legende</u>

5-1

Teilfläche Oberbodenmischproben

Meter 0 50 190 Maßstab 1 : 1000

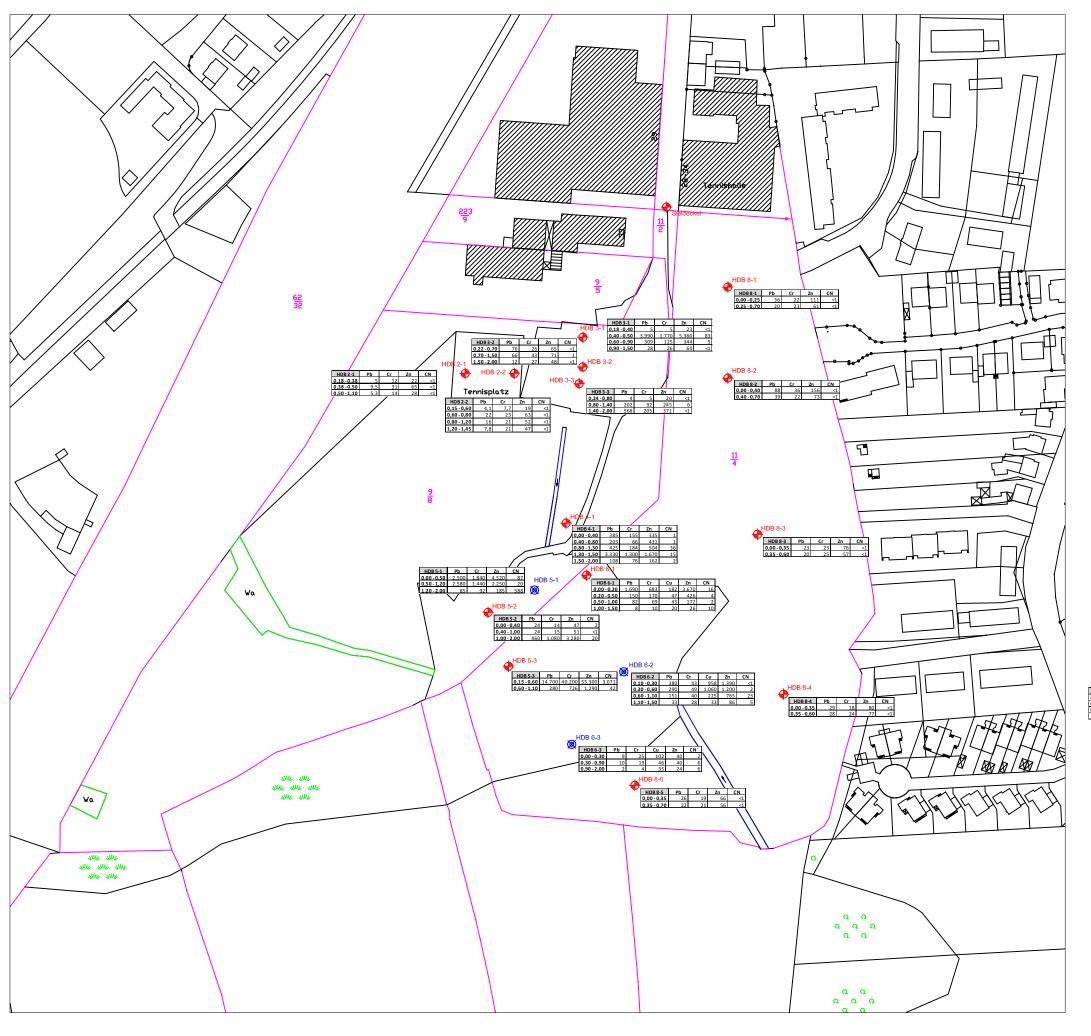
GECONSULT
HAMBURG GBR

DIPL-GEOLOGEN SCHULZE & OR. SCHINZEL
BORISTELER CHAUSSES 68-090- 22483 HAMBUR
TELEPON GUIQUO DT 11-63 FAX COUNCUT 11-68
WWW.GEOCONSULT-HAMBURG.DE

Bauvorhaben:
B - Plan 107,
Bad Oldesloe
Planbezeichnung:
Teilfläche Oberboden-

nischproben

Anlage: -1.4
Projekt-Nr.: 438 - 11

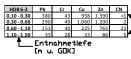

Datum: 01.02.2011

Maßstab: M 1 : 1000

Bearbelter: US

Zeichner

Lageplan Ansatzpunkte HDB mit Bodenanalytik


Legende

HDB 5-3

Ansatzpunkt Handdrehbohrur

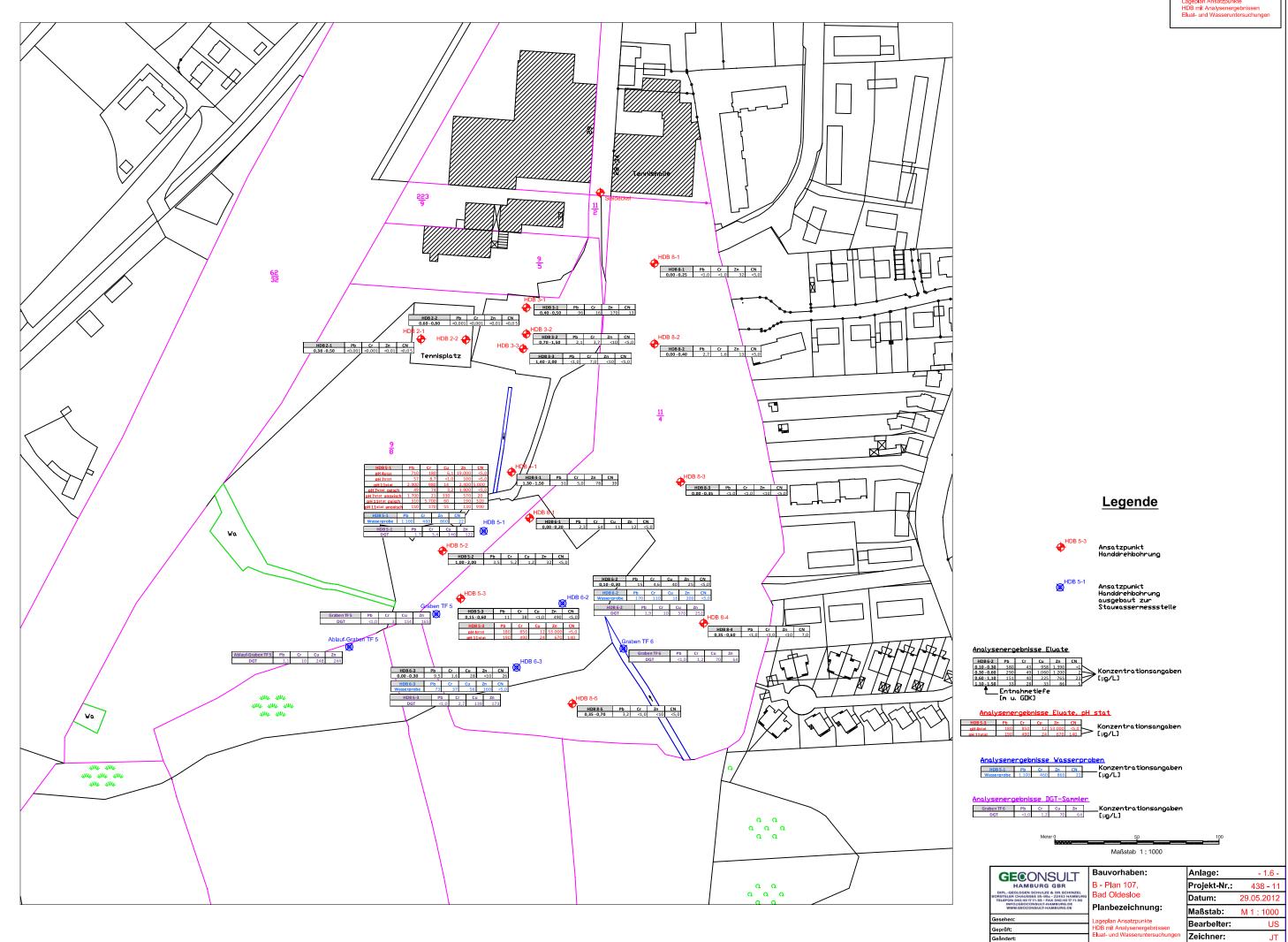
HDB 5-1

Ansatzpunkt Handdrehbohrung ausgebaut zur Stauwassermessstelle

Konzentrationsangaben
[mg/kg TM]

Meter 0 50

Maßstab 1:1000


GEGONSULT
HAMBURG GBR

DIPL-GEOLOGEN SCHULZE & DR. SCHUZEL
BORSTILER FOLUSSES 89-98-22453 HAMBUR
TELFON 640-40 71 1-155 - FAX 604-04 71 1-15
HNYO-GEOCOMSULT-HAMBURG DE
WWW.EEOCOMSULT-HAMBURG DE

Bauvorhaben:
B - Plan 107,
Bad Oldesloe
Planbezeichnung:
Lageplan Ansatzpunkte
HDB mit Bodenanalytik

Anlage: - 1.5 Projekt-Nr.: 438 - 11
Datum: 29.05.2012
Maßstab: M 1 : 1000
Bearbelter: US

Zeichner:

Lageplan Kampfmittelerkundung Tennisplatz <u>Legende</u> Bombentrichter Blindgängerverdachtspunkt 4114 4114 4114 4114 4114 4114 4114 Maßstab 1:1000 GECONSULT
HAMBURG GBR
DIPL.-GEOLOGEN SCHUIZE & DOR.SCHINZEL
ORSTELER CHAUSSEE 48-980 - 22453 HAMBU Bauvorhaben: Anlage: B - Plan 107, a a a Projekt-Nr.: Bad Oldesloe Datum: Planbezeichnung: Maßstab: Bearbelter: Zeichner

GBA LABORGRUPPE - WISSEN WAS DRIN IST...

GBA GESELLSCHAFT FÜR BIOANALYTIK MBH

Flensburger Straße 15 • 25421 Pinneberg

GEOCONSULT Hamburg GbR Dipl.-Geol. Schulze und Dr. Schinzel

Borsteler Chaussee 85-99A, Haus 6, 3. Stock

22453 Hamburg

Prüfbericht-Nr.: 2011P516984 / 1

Auftraggeber	GEOCONSULT Hamburg GbR DiplGeol. Schulze und Dr. Schinzel
Eingangsdatum	13.12.2011
Projekt	B-Plan 107, Bad Oldesloe
Material	Boden
Kennzeichnung	siehe Tabelle
Auftrag	438-11
Verpackung	PE-Eimer
Probenmenge	jeweils ca. 3-5 kg
Auftragsnummer	11509864
Probenahme	durch den Auftraggeber
Probentransport	Auftraggeber
Labor	GBA Gesellschaft für Bioanalytik Hamburg mbH
Analysenbeginn / -ende	13.12.2011 - 19.12.2011
Methoden	siehe letzte Seite
Unteraufträge	keine
Bemerkung	
Probenaufbewahrung	Wenn nicht anders vereinbart, werden Feststoffproben drei Monate und Wasserproben bis zwei Wochen nach Prüfberichtserstellung aufbewahrt.

Pinneberg, 19.12.2011

Ralf Murzen (Geschäftsführer)

Die Prüfergebnisse beziehen sich ausschließlich auf die genannten Prüfgegenstände. Ohne schriftliche Genehmigung der GBA darf der Prüfbericht nicht auszugsweise vervielfältigt werden.

Seite 1 von 3 zu Prüfbericht-Nr.: 2011P516984 / 1

Prüfbericht-Nr.: 2011P516984 / 1

B-Plan 107, Bad Oldesloe

Auftrag		11509864	11509864	11509864	11509864
Probe-Nr.		001	002	003	004
Material		Boden	Boden	Boden	Boden
Probenbezeichnung		MP 4	MP 5-1	MP 5-2	MP 6-1
Probemenge		ca. 3-5 kg	ca. 3-5 kg	ca. 3-5 kg	ca. 3-5 kg
Probeneingang		13.12.2011	13.12.2011	13.12.2011	13.12.2011
Analysenergebnisse	Einheit				
Trockenrückstand	Gew%	74,2	62,5	60,1	49,3
pH-Wert (CaCl₂)		6,7	6,6	6,8	6,8
Arsen	mg/kg TM	7,4	7,6	3,3	15
Blei	mg/kg TM	176	37	22	502
Cadmium	mg/kg TM	0,48	0,48	0,23	1,0
Chrom ges.	mg/kg TM	73	24	32	223
Kupfer	mg/kg TM	26	21	13	83
Nickel	mg/kg TM	11	8,7	18	16
Quecksilber	mg/kg TM	0,10	<0,10	<0,10	0,28
Zink	mg/kg TM	173	105	55	962
Cyanid ges.	mg/kg TM	2,4	1,6	<1,0	77

Auftrag		11509864	11509864	11509864	11509864
Probe-Nr.		005	006	007	800
Material		Boden	Boden	Boden	Boden
Probenbezeichnung		MP 8-1	MP 8-2	MP 8-3	MP 8-4
Probemenge		ca. 3-5 kg	ca. 3-5 kg	ca. 3-5 kg	ca. 3-5 kg
Probeneingang		13.12.2011	13.12.2011	13.12.2011	13.12.2011
Analysenergebnisse	Einheit				
Trockenrückstand	Gew%	81,5	74,8	77,4	74,6
pH-Wert (CaCl ₂)		6,7	6,1	6,1	6,1
Arsen	mg/kg TM	6,7	7,7	7,7	6,6
Blei	mg/kg TM	59	81	33	26
Cadmium	mg/kg TM	0,34	0,33	0,33	0,62
Chrom ges.	mg/kg TM	29	23	28	19
Kupfer	mg/kg TM	26	23	20	21
Nickel	mg/kg TM	12	10	10	8,8
Quecksilber	mg/kg TM	<0,10	<0,10	<0,10	<0,10
Zink	mg/kg TM	123	111	90	91
Cyanid ges.	mg/kg TM	<1,0	<1,0	<1,0	<1,0

Angewandte Verfahren und Bestimmungsgrenzen

Bestimmungs-	Einheit	Methode
grenze		
0,40	Gew%	DIN ISO 11465 ^a
		DIN ISO 10390ª
		DIN EN 13657 ^a
1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
	97enze 0,40 1,0	grenze 0,40 Gew% 1,0 mg/kg TM

Prüfbericht-Nr. 2011P516984 / 1

Angewandte Verfahren und Bestimmungsgrenzen

Parameter	Bestimmungs-	Einheit	Methode
	grenze		
Cadmium	0,10	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Chrom ges.	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Kupfer	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Nickel	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Quecksilber	0,10	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Zink	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Cyanid ges.	1,0	mg/kg TM	DIN ISO 17380ª

Die mit ^a gekennzeichneten Verfahren sind akkreditierte Verfahren. Die Bestimmungsgrenzen können matrixbedingt variieren.

GBA GESELLSCHAFT FÜR BIOANALYTIK HAMBURG MBH

GESCHÄFTSBEREICH: UMWELTANALYTIK

STANDORT: PINNEBERG

GBA GESELLSCHAFT FÜR BIOANALYTIK HAMBURG MBH

Flensburger Straße 15 • 25421 Pinneberg

GEOCONSULT Hamburg GbR Dipl.-Geol. Schulze und Dr. Schinzel

Borsteler Chaussee 85-99A, Haus 6, 3. Stock

22453 Hamburg

Prüfbericht-Nr.: 2011P517083 / 1

Auftraggeber	GEOCONSULT Hamburg GbR DiplGeol. Schulze und Dr. Schinzel
Eingangsdatum	14.12.2011
Projekt	B-Plan 107, Bad Oldesloe
Material	Boden
Kennzeichnung	siehe Tabelle
Auftrag	438-11
Verpackung	PE-Eimer
Probenmenge	jeweils ca. 5 kg
Auftragsnummer	11509918
Probenahme	durch den Auftraggeber
Probentransport	Auftraggeber
Labor	GBA Gesellschaft für Bioanalytik Hamburg mbH
Analysenbeginn / -ende	14.12.2011 - 20.12.2011
Methoden	siehe letzte Seite
Unteraufträge	keine
Bemerkung	
Probenaufbewahrung	Wenn nicht anders vereinbart, werden Feststoffproben drei Monate und Wasserproben bis zwei Wochen nach Prüfberichtserstellung aufbewahrt.

Pinneberg, 20.12.2011

Ralf Murzen (Geschäftsführer)

Die Prüfergebnisse beziehen sich ausschließlich auf die genannten Prüfgegenstände. Ohne schriftliche Genehmigung der GBA darf der Prüfbericht nicht auszugsweise vervielfältigt werden.

Seite 1 von 2 zu Prüfbericht-Nr.: 2011P5i7083 / 1

Prüfbericht-Nr.: 2011P517083 / 1

B-Plan 107, Bad Oldesloe

Auftrag		11509918	11509918
Probe-Nr.		001	002
Material		Boden	Boden
Probenbezeichnung		MP 8-5	MP 6-2
Probemenge		ca. 5 kg	ca. 5 kg
Probeneingang		14.12.2011	14.12.2011
Analysenergebnisse	Einheit		
Trockenrückstand	Gew%	73,8	69,9
pH-Wert (CaCl ₂)		6,5	5,7
Arsen	mg/kg TM	6,9	7,3
Blei	mg/kg TM	27	61
Cadmium	mg/kg TM	0,33	0,45
Chrom ges.	mg/kg TM	23	23
Kupfer	mg/kg TM	17	60
Nickel	mg/kg TM	9,8	12
Quecksilber	mg/kg TM	<0,10	<0,10
Zink	mg/kg TM	62	155
Cyanid ges.	mg/kg TM	<1,0	<1,0

Angewandte Verfahren und Bestimmungsgrenzen

Parameter	Bestimmungs-	Einheit	Methode
	grenze		
Trockenrückstand	0,40	Gew%	DIN ISO 11465 ^a
pH-Wert (CaCl ₂)			DIN ISO 10390 ^a
Aufschluss mit Königswasser			DIN EN 13657 ^a
Arsen	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Blei	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Cadmium	0,10	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Chrom ges.	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Kupfer	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Nickel	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Quecksilber	0,10	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Zink	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Cyanid ges.	1,0	mg/kg TM	DIN ISO 17380 ^a

Die mit ^a gekennzeichneten Verfahren sind akkreditierte Verfahren. Die Bestimmungsgrenzen können matrixbedingt variieren.

GBA LABORGRUPPE - WISSEN WAS DRIN IST...

GBA GESELLSCHAFT FÜR BIOANALYTIK MBH

Flensburger Straße 15 • 25421 Pinneberg

GEOCONSULT Hamburg GbR Dipl.-Geol. Schulze und Dr. Schinzel

Borsteler Chaussee 85-99A, Haus 6, 3. Stock

22453 Hamburg

Prüfbericht-Nr.: 2011P517086/ 2, ergänzt Version 1 vom 20.12.2011

A £4	OFOCONOLII T Hamburg Obd Dial Cool Cobular and Dr. Calairea
Auftraggeber	GEOCONSULT Hamburg GbR DiplGeol. Schulze und Dr. Schinzel
Eingangsdatum	14.12.2011
Projekt	B-Plan 107, Bad Oldesloe
Material	Boden
Kennzeichnung	HDB 8-5, Probe 1
Auftrag	438-11
Verpackung	Schraubdeckelglas
Probenmenge	ca. 500 g
Auftragsnummer	11509918
Probenahme	durch den Auftraggeber
Probentransport	Auftraggeber
Labor	GBA Gesellschaft für Bioanalytik mbH
Analysenbeginn / -ende	14.12.2011 - 27.01.2012
Methoden	siehe letzte Seite
Unteraufträge	keine
Bemerkung	
Probenaufbewahrung	Wenn nicht anders vereinbart, werden Feststoffproben drei Monate und Wasserproben bis zwei Wochen nach Prüfberichtserstellung aufbewahrt.

Pinneberg, 13.02.2012

Ralf Murzen
(Geschäftsführer)

Die Prüfergebnisse beziehen sich ausschließlich auf die genannten Prüfgegenstände. Ohne schriftliche Genehmigung der GBA darf der Prüfbericht nicht auszugsweise vervielfältigt werden.

Seite 1 von 3 zu Prüfbericht-Nr.: 2011P517086/ 2

Prüfbericht-Nr.: 2011P517086/ 2

B-Plan 107, Bad Oldesloe

Auftrag 115099 Probe-Nr. 003 Material Boder	18
Backwist Dodon	
Material Boder	1
Probenbezeichnung HDB 8-5, Probe 1	
Probemenge ca. 500	g
Probeneingang 14.12.20)11
Analysenergebnisse Einheit	
Trockenrückstand Gew% 72,0	
pH-Wert (CaCl ₂) 5,0	
Arsen mg/kg TM 5,5	
Blei mg/kg TM 26	
Cadmiummg/kg TM0,33	
Chrom ges. mg/kg TM 19	
Kupfermg/kg TM19	
Nickel mg/kg TM 9,0	
Quecksilber mg/kg TM <0,10	
Zink mg/kg TM 66	
Cyanid ges. mg/kg TM <1,0	
Eluat	
Arsen mg/L 0,0016	3
Blei mg/L 0,0032	2
Cadmium mg/L <0,000	30
Chrom ges. mg/L <0,001	0
Kupfer mg/L 0,012	
Nickel mg/L 0,0014	1
Quecksilber mg/L <0,0002	20
Zink mg/L <0,010)
Cyanid ges. mg/L <0,005	0

Prüfbericht-Nr.: 2011P517086/ 2

B-Plan 107, Bad Oldesloe

Angewandte Verfahren und Bestimmungsgrenzen

Parameter	Bestimmungs-	Einheit	Methode
	grenze		
Trockenrückstand		Gew%	DIN ISO 11465 ^a
pH-Wert (CaCl₂)			DIN ISO 10390 ^a
Aufschluss mit Königswasser			DIN EN 13657 ^a
Arsen	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Blei	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Cadmium	0,10	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Chrom ges.	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Kupfer	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Nickel	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Quecksilber	0,10	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Zink	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Cyanid ges.	1,0	mg/kg TM	DIN ISO 17380ª
Eluat			DIN EN 12457-4 ^a
Arsen	0,00050	mg/L	DIN EN ISO 17294-2 (E29) ^a
Blei	0,0010	mg/L	DIN EN ISO 17294-2 (E29) ^a
Cadmium	0,00030	mg/L	DIN EN ISO 17294-2 (E29) ^a
Chrom ges.	0,0010	mg/L	DIN EN ISO 17294-2 (E29) ^a
Kupfer	0,0010	mg/L	DIN EN ISO 17294-2 (E29) ^a
Nickel	0,0010	mg/L	DIN EN ISO 17294-2 (E29) ^a
Quecksilber	0,00020	mg/L	DIN EN ISO 17294-2 (E29) ^a
Zink	0,010	mg/L	DIN EN ISO 17294-2 (E29) ^a
Cyanid ges.		mg/L	DIN EN ISO 14403 (D6) ^a

Die mit ^a gekennzeichneten Verfahren sind akkreditierte Verfahren. Die Bestimmungsgrenzen können matrixbedingt variieren.

GBA LABORGRUPPE - WISSEN WAS DRIN IST...

GBA GESELLSCHAFT FÜR BIOANALYTIK MBH

Flensburger Straße 15 • 25421 Pinneberg

GEOCONSULT Hamburg GbR Dipl.-Geol. Schulze und Dr. Schinzel

Borsteler Chaussee 85-99A, Haus 6, 3. Stock

22453 Hamburg

Prüfbericht-Nr.: 2012P500155 / 1

Auftraggeber	GEOCONSULT Hamburg GbR DiplGeol. Schulze und Dr. Schinzel
Eingangsdatum	13.12.2011
Projekt	B-Plan 107, Bad Oldesloe
Material	Boden
Kennzeichnung	siehe Tabelle
Auftrag	438-11
Verpackung	Schraubdeckelgläser
Probenmenge	jeweils ca. 500 g
Auftragsnummer	11509864
Probenahme	durch den Auftraggeber
Probentransport	Auftraggeber
Labor	GBA Gesellschaft für Bioanalytik Hamburg mbH
Analysenbeginn / -ende	13.12.2011 - 27.12.2011
Methoden	siehe letzte Seite
Unteraufträge	keine
Bemerkung	
Probenaufbewahrung	Wenn nicht anders vereinbart, werden Feststoffproben drei Monate und Wasserproben bis zwei Wochen nach Prüfberichtserstellung aufbewahrt.

Pinneberg, 04.01.2012

Ralf Murzen
(Geschäftsführer)

Die Prüfergebnisse beziehen sich ausschließlich auf die genannten Prüfgegenstände. Ohne schriftliche Genehmigung der GBA darf der Prüfbericht nicht auszugsweise vervielfältigt werden.

Seite 1 von 13 zu Prüfbericht-Nr.: 2012P500155 / 1

Auftrag		11509864	11509864	11509864	11509864
Probe-Nr.		009	010	011	012
		-		-	
Material		Boden	Boden	Boden	Boden
Probenbezeichnung		HDB 8-1 Probe 1	HDB 8-1 Probe 2	HDB 8-2 Probe 1	HDB 8-2 Probe 2
Probemenge		ca. 500 g	ca. 500 g	ca. 500 g	ca. 500 g
Probeneingang		13.12.2011	13.12.2011	13.12.2011	13.12.2011
Analysenergebnisse	Einheit				
Trockenrückstand	Gew%	71,4	83,3	76,9	79,7
pH-Wert (CaCl ₂)		5,7	6,1	5,5	5,9
Arsen	mg/kg TM	5,5	5,9	7,9	6,5
Blei	mg/kg TM	36	20	88	39
Cadmium	mg/kg TM	0,35	0,14	0,41	0,22
Chrom ges.	mg/kg TM	22	23	36	22
Kupfer	mg/kg TM	22	15	22	16
Nickel	mg/kg TM	9,2	12	9,8	8,9
Quecksilber	mg/kg TM	0,11	<0,10	<0,10	<0,10
Zink	mg/kg TM	111	61	156	73
Cyanid ges.	mg/kg TM	<1,0	<1,0	<1,0	<1,0
Eluat			n.a.		n.a.
pH-Wert		6,4	n.a.	6,4	n.a.
Leitfähigkeit	μS/cm	38	n.a.	23	n.a.
Arsen	mg/L	0,0018	n.a.	0,0022	n.a.
Blei	mg/L	<0,0010	n.a.	0,0027	n.a.
Cadmium	mg/L	<0,00030	n.a.	<0,00030	n.a.
Chrom ges.	mg/L	<0,0010	n.a.	0,0016	n.a.
Kupfer	mg/L	0,013	n.a.	0,022	n.a.
Nickel	mg/L	0,0030	n.a.	0,0015	n.a.
Quecksilber	mg/L	<0,00020	n.a.	<0,00020	n.a.
Zink	mg/L	0,032	n.a.	0,013	n.a.
Cyanid ges.	mg/L	<0,0050	n.a.	<0,0050	n.a.

Auftrag		11509864	11509864	11509864	11509864
-					
Probe-Nr.		013	014	015	016
Material		Boden	Boden	Boden	Boden
Probenbezeichnung		HDB 8-3 Probe 1	HDB 8-3 Probe 2	HDB 8-4 Probe 1	HDB 8-4 Probe 2
Probemenge		ca. 500 g	ca. 500 g	ca. 500 g	ca. 500 g
Probeneingang		13.12.2011	13.12.2011	13.12.2011	13.12.2011
Analysenergebnisse	Einheit				
Trockenrückstand	Gew%	81,8	84,8	68,1	75,9
pH-Wert (CaCl ₂)		5,6	6,0	6,2	6,1
Arsen	mg/kg TM	8,1	7,2	5,7	6,7
Blei	mg/kg TM	23	20	29	28
Cadmium	mg/kg TM	0,30	0,14	0,41	0,34
Chrom ges.	mg/kg TM	23	25	18	24
Kupfer	mg/kg TM	18	16	19	20
Nickel	mg/kg TM	11	13	8,0	11
Quecksilber	mg/kg TM	<0,10	<0,10	<0,10	<0,10
Zink	mg/kg TM	76	57	80	77
Cyanid ges.	mg/kg TM	<1,0	<1,0	<1,0	<1,0
Eluat			n.a.	n.a.	
pH-Wert		5,9	n.a.	n.a.	6,1
Leitfähigkeit	μS/cm	20	n.a.	n.a.	23
Arsen	mg/L	0,0027	n.a.	n.a.	0,0017
Blei	mg/L	<0,0010	n.a.	n.a.	<0,0010
Cadmium	mg/L	<0,00030	n.a.	n.a.	<0,00030
Chrom ges.	mg/L	<0,0010	n.a.	n.a.	<0,0010
Kupfer	mg/L	0,019	n.a.	n.a.	0,012
Nickel	mg/L	0,0014	n.a.	n.a.	<0,0010
Quecksilber	mg/L	<0,00020	n.a.	n.a.	<0,00020
Zink	mg/L	<0,010	n.a.	n.a.	<0,010
Cyanid ges.	mg/L	<0,0050	n.a.	n.a.	0,0070

Auftrag		11509864	11509864	11509864	11509864
-					
Probe-Nr.		017	018	019	020
Material		Boden	Boden	Boden	Boden
Probenbezeichnung		HDB TF 4-1 Probe 1	HDB TF 4-1 Probe 2	HDB TF 4-1 Probe 3	HDB TF 4-1 Probe 4
Probemenge		ca. 500 g	ca. 500 g	ca. 500 g	ca. 500 g
Probeneingang		13.12.2011	13.12.2011	13.12.2011	13.12.2011
Analysenergebnisse	Einheit				
Trockenrückstand	Gew%	77,0	76,9	83,5	66,3
pH-Wert (CaCl ₂)		5,6	6,8	7,0	6,6
Arsen	mg/kg TM	6,8	18	6,3	8,7
Blei	mg/kg TM	385	203	425	3330
Cadmium	mg/kg TM	0,65	0,52	0,95	3,9
Chrom ges.	mg/kg TM	155	66	184	1300
Kupfer	mg/kg TM	45	200	23	40
Nickel	mg/kg TM	10	22	15	14
Quecksilber	mg/kg TM	<0,10	<0,10	<0,10	0,33
Zink	mg/kg TM	335	431	504	1670
Cyanid ges.	mg/kg TM	1,4	1,2	36	15
Eluat		n.a.	n.a.	n.a.	
pH-Wert		n.a.	n.a.	n.a.	7,1
Leitfähigkeit	μS/cm	n.a.	n.a.	n.a.	680
Arsen	mg/L	n.a.	n.a.	n.a.	0,00097
Blei	mg/L	n.a.	n.a.	n.a.	0,031
Cadmium	mg/L	n.a.	n.a.	n.a.	0,00083
Chrom ges.	mg/L	n.a.	n.a.	n.a.	0,0050
Kupfer	mg/L	n.a.	n.a.	n.a.	0,0060
Nickel	mg/L	n.a.	n.a.	n.a.	0,0012
Quecksilber	mg/L	n.a.	n.a.	n.a.	<0,00020
Zink	mg/L	n.a.	n.a.	n.a.	0,078
Cyanid ges.	mg/L	n.a.	n.a.	n.a.	0,039

Auftrag		11509864	11509864	11509864	11509864
-					
Probe-Nr.		021	022	023	024
Material		Boden	Boden	Boden	Boden
Probenbezeichnung		HDB TF 4-1 Probe 5	HDB TF 5-1 Probe 1	HDB TF 5-1 Probe 2	HDB TF 5-1 Probe 3
Probemenge		ca. 500 g	ca. 500 g	ca. 500 g	ca. 500 g
Probeneingang		13.12.2011	13.12.2011	13.12.2011	13.12.2011
Analysenergebnisse	Einheit				
Trockenrückstand	Gew%	67,9	45,9	40,0	16,5
pH-Wert (CaCl₂)		6,1	6,5	6,5	6,5
Arsen	mg/kg TM	15	9,4	22	7,7
Blei	mg/kg TM	108	2500	2580	85
Cadmium	mg/kg TM	0,51	10	6,7	1,5
Chrom ges.	mg/kg TM	76	1840	1440	92
Kupfer	mg/kg TM	31	56	43	69
Nickel	mg/kg TM	22	26	22	28
Quecksilber	mg/kg TM	<0,10	0,46	0,27	0,16
Zink	mg/kg TM	162	4520	2250	185
Cyanid ges.	mg/kg TM	2,1	87	20	588
Eluat		n.a.	n.a.	n.a.	n.a.
pH-Wert		n.a.	n.a.	n.a.	n.a.
Leitfähigkeit	μS/cm	n.a.	n.a.	n.a.	n.a.
Arsen	mg/L	n.a.	n.a.	n.a.	n.a.
Blei	mg/L	n.a.	n.a.	n.a.	n.a.
Cadmium	mg/L	n.a.	n.a.	n.a.	n.a.
Chrom ges.	mg/L	n.a.	n.a.	n.a.	n.a.
Kupfer	mg/L	n.a.	n.a.	n.a.	n.a.
Nickel	mg/L	n.a.	n.a.	n.a.	n.a.
Quecksilber	mg/L	n.a.	n.a.	n.a.	n.a.
Zink	mg/L	n.a.	n.a.	n.a.	n.a.
Cyanid ges.	mg/L	n.a.	n.a.	n.a.	n.a.

Auftrag		11509864	11509864	11509864	11509864
Probe-Nr.		025	026	027	028
Material		Boden	Boden	Boden	Boden
Probenbezeichnung		HDB TF 5-2 Probe 1	HDB TF 5-2 Probe 2	HDB TF 5-2 Probe 3	HDB TF 5-3 Probe 1
Probemenge		ca. 500 g	ca. 500 g	ca. 500 g	ca. 500 g
Probeneingang		13.12.2011	13.12.2011	13.12.2011	13.12.2011
Analysenergebnisse	Einheit				
Trockenrückstand	Gew%	59,9	84,1	48,5	17,0
pH-Wert (CaCl₂)		6,7	7,0	6,7	6,5
Arsen	mg/kg TM	3,1	3,7	3,0	22
Blei	mg/kg TM	24	24	460	14700
Cadmium	mg/kg TM	0,25	0,16	5,9	138
Chrom ges.	mg/kg TM	14	15	1080	40200
Kupfer	mg/kg TM	8,7	13	13	162
Nickel	mg/kg TM	5,3	9,4	6,7	17
Quecksilber	mg/kg TM	<0,10	<0,10	<0,10	0,85
Zink	mg/kg TM	47	51	3280	55300
Cyanid ges.	mg/kg TM	1,6	<1,0	20	3071
Eluat		n.a.	n.a.		
pH-Wert		n.a.	n.a.	7,4	6,8
Leitfähigkeit	μS/cm	n.a.	n.a.	429	134
Arsen	mg/L	n.a.	n.a.	0,00068	<0,00050
Blei	mg/L	n.a.	n.a.	0,0035	0,011
Cadmium	mg/L	n.a.	n.a.	<0,00030	<0,00030
Chrom ges.	mg/L	n.a.	n.a.	0,0052	0,038
Kupfer	mg/L	n.a.	n.a.	0,0012	<0,0010
Nickel	mg/L	n.a.	n.a.	<0,0010	<0,0010
Quecksilber	mg/L	n.a.	n.a.	<0,00020	<0,00020
Zink	mg/L	n.a.	n.a.	0,032	0,49
Cyanid ges.	mg/L	n.a.	n.a.	<0,0050	<0,0050

Auftrag		11509864	11509864	11509864	11509864
Probe-Nr.		029	030	031	032
Material		Boden	Boden	Boden	Boden
Probenbezeichnung		HDB TF 5-3 Probe 2	HDB TF 6-1 Probe 1	HDB TF 6-1 Probe 2	HDB TF 6-1 Probe 3
Probemenge		ca. 500 g	ca. 500 g	ca. 500 g	ca. 500 g
Probeneingang		13.12.2011	13.12.2011	13.12.2011	13.12.2011
Analysenergebnisse	Einheit				
Trockenrückstand	Gew%	15,9	23,2	47,2	44,3
pH-Wert (CaCl₂)		5,7	7,0	7,0	6,9
Arsen	mg/kg TM	17	107	9,7	20
Blei	mg/kg TM	280	1690	150	82
Cadmium	mg/kg TM	2,8	15	1,6	0,99
Chrom ges.	mg/kg TM	726	683	170	69
Kupfer	mg/kg TM	26	182	47	43
Nickel	mg/kg TM	20	30	24	29
Quecksilber	mg/kg TM	<0,10	0,36	0,16	0,11
Zink	mg/kg TM	1290	3670	426	172
Cyanid ges.	mg/kg TM	42	16	3,6	1,6
Eluat		n.a.		n.a.	n.a.
pH-Wert		n.a.	7,5	n.a.	n.a.
Leitfähigkeit	μS/cm	n.a.	200	n.a.	n.a.
Arsen	mg/L	n.a.	0,00099	n.a.	n.a.
Blei	mg/L	n.a.	0,0023	n.a.	n.a.
Cadmium	mg/L	n.a.	<0,00030	n.a.	n.a.
Chrom ges.	mg/L	n.a.	0,064	n.a.	n.a.
Kupfer	mg/L	n.a.	0,011	n.a.	n.a.
Nickel	mg/L	n.a.	0,0014	n.a.	n.a.
Quecksilber	mg/L	n.a.	<0,00020	n.a.	n.a.
Zink	mg/L	n.a.	0,012	n.a.	n.a.
Cyanid ges.	mg/L	n.a.	<0,0050	n.a.	n.a.

Auftrag		11509864	11509864	11509864	11509864
Probe-Nr.		033	034	035	036
Material		Boden	Boden	Boden	Boden
Probenbezeichnung		HDB TF 6-1 Probe 4	HDB TF 6-2 Probe 1	HDB TF 6-2 Probe 2	HDB TF 6-2 Probe 3
Probemenge		ca. 500 g	ca. 500 g	ca. 500 g	ca. 500 g
Probeneingang		13.12.2011	13.12.2011	13.12.2011	13.12.2011
Analysenergebnisse	Einheit				
Trockenrückstand	Gew%	13,4	56,1	60,6	17,9
pH-Wert (CaCl₂)		6,6	7,2	7,3	6,9
Arsen	mg/kg TM	33	18	24	55
Blei	mg/kg TM	7,9	380	290	151
Cadmium	mg/kg TM	0,30	2,1	1,8	1,6
Chrom ges.	mg/kg TM	10	43	49	40
Kupfer	mg/kg TM	20	958	1060	225
Nickel	mg/kg TM	46	42	65	25
Quecksilber	mg/kg TM	<0,10	0,73	0,38	0,36
Zink	mg/kg TM	26	1390	1200	765
Cyanid ges.	mg/kg TM	10	<1,0	1,7	23
Eluat		n.a.		n.a.	n.a.
pH-Wert		n.a.	7,5	n.a.	n.a.
Leitfähigkeit	μS/cm	n.a.	148	n.a.	n.a.
Arsen	mg/L	n.a.	0,0012	n.a.	n.a.
Blei	mg/L	n.a.	0,015	n.a.	n.a.
Cadmium	mg/L	n.a.	<0,00030	n.a.	n.a.
Chrom ges.	mg/L	n.a.	0,0046	n.a.	n.a.
Kupfer	mg/L	n.a.	0,040	n.a.	n.a.
Nickel	mg/L	n.a.	<0,0010	n.a.	n.a.
Quecksilber	mg/L	n.a.	<0,00020	n.a.	n.a.
Zink	mg/L	n.a.	0,025	n.a.	n.a.
Cyanid ges.	mg/L	n.a.	<0,0050	n.a.	n.a.

Auftrag		11509864	11509864	11509864	11509864
Probe-Nr.		037	038	039	040
Material		Boden	Boden	Boden	Boden
Probenbezeichnung		HDB TF 6-2 Probe 4	HDB TF 6-3 Probe 1	HDB TF 6-3 Probe 2	HDB TF 6-3 Probe 3
Probemenge		ca. 500 g	ca. 500 g	ca. 500 g	ca. 500 g
Probeneingang		13.12.2011	13.12.2011	13.12.2011	13.12.2011
Analysenergebnisse	Einheit				
Trockenrückstand	Gew%	35,3	29,5	23,5	17,5
pH-Wert (CaCl₂)		6,0	5,9	5,9	5,9
Arsen	mg/kg TM	7,8	14	17	50
Blei	mg/kg TM	33	9,1	10	1,6
Cadmium	mg/kg TM	0,83	0,87	0,54	0,58
Chrom ges.	mg/kg TM	28	25	19	3,9
Kupfer	mg/kg TM	33	102	46	35
Nickel	mg/kg TM	13	22	14	21
Quecksilber	mg/kg TM	0,21	0,25	<0,10	<0,10
Zink	mg/kg TM	86	40	40	24
Cyanid ges.	mg/kg TM	5,4	1,9	6,4	5,7
Eluat		n.a.		n.a.	n.a.
pH-Wert		n.a.	6,2	n.a.	n.a.
Leitfähigkeit	μS/cm	n.a.	66	n.a.	n.a.
Arsen	mg/L	n.a.	0,0059	n.a.	n.a.
Blei	mg/L	n.a.	0,0095	n.a.	n.a.
Cadmium	mg/L	n.a.	0,00042	n.a.	n.a.
Chrom ges.	mg/L	n.a.	0,0016	n.a.	n.a.
Kupfer	mg/L	n.a.	0,028	n.a.	n.a.
Nickel	mg/L	n.a.	0,0020	n.a.	n.a.
Quecksilber	mg/L	n.a.	<0,00020	n.a.	n.a.
Zink	mg/L	n.a.	<0,010	n.a.	n.a.
Cyanid ges.	mg/L	n.a.	0,026	n.a.	n.a.

Auftrag		11509864	11509864	11509864	11509864
-					
Probe-Nr.		041	042	043	044
Material		Boden	Boden	Boden	Boden
Probenbezeichnung		HDB TF 3-1 Probe 1	HDB TF 3-1 Probe 2	HDB TF 3-1 Probe 3	HDB TF 3-1 Probe 4
Probemenge		ca. 500 g	ca. 500 g	ca. 500 g	ca. 500 g
Probeneingang		13.12.2011	13.12.2011	13.12.2011	13.12.2011
Analysenergebnisse	Einheit				
Trockenrückstand	Gew%	88,2	75,8	82,3	83,8
pH-Wert (CaCl₂)		7,0	7,0	7,2	7,4
Arsen	mg/kg TM	2,9	8,2	6,5	3,5
Blei	mg/kg TM	4,9	3990	309	28
Cadmium	mg/kg TM	0,12	5,5	0,57	0,12
Chrom ges.	mg/kg TM	5,1	1770	125	26
Kupfer	mg/kg TM	9,6	35	30	9,3
Nickel	mg/kg TM	4,3	11	8,1	7,2
Quecksilber	mg/kg TM	<0,10	0,17	<0,10	<0,10
Zink	mg/kg TM	23	5360	344	64
Cyanid ges.	mg/kg TM	<1,0	83	5,1	<1,0
Eluat		n.a.		n.a.	n.a.
pH-Wert		n.a.	6,8	n.a.	n.a.
Leitfähigkeit	μS/cm	n.a.	190	n.a.	n.a.
Arsen	mg/L	n.a.	0,00066	n.a.	n.a.
Blei	mg/L	n.a.	0,096	n.a.	n.a.
Cadmium	mg/L	n.a.	<0,00030	n.a.	n.a.
Chrom ges.	mg/L	n.a.	0,016	n.a.	n.a.
Kupfer	mg/L	n.a.	0,0022	n.a.	n.a.
Nickel	mg/L	n.a.	<0,0010	n.a.	n.a.
Quecksilber	mg/L	n.a.	<0,00020	n.a.	n.a.
Zink	mg/L	n.a.	0,17	n.a.	n.a.
Cyanid ges.	mg/L	n.a.	0,013	n.a.	n.a.

Auftrag		11509864	11509864	11509864	11509864
Probe-Nr.		045	046	047	048
Material		Boden	Boden	Boden	Boden
Probenbezeichnung		HDB TF 3-2 Probe 1	HDB TF 3-2 Probe 2	HDB TF 3-2 Probe 3	HDB TF 3-3 Probe 1
Probemenge		ca. 500 g	ca. 500 g	ca. 500 g	ca. 500 g
Probeneingang		13.12.2011	13.12.2011	13.12.2011	13.12.2011
Analysenergebnisse	Einheit				
Trockenrückstand	Gew%	88,9	82,1	84,0	84,6
pH-Wert (CaCl₂)		7,5	7,4	7,6	7,6
Arsen	mg/kg TM	3,2	7,7	5,9	2,8
Blei	mg/kg TM	76	66	12	3,9
Cadmium	mg/kg TM	0,11	0,23	0,16	<0,10
Chrom ges.	mg/kg TM	26	43	27	5,4
Kupfer	mg/kg TM	8,5	10	14	7,6
Nickel	mg/kg TM	3,8	14	17	3,8
Quecksilber	mg/kg TM	<0,10	<0,10	<0,10	<0,10
Zink	mg/kg TM	65	71	48	20
Cyanid ges.	mg/kg TM	<1,0	1,2	<1,0	<1,0
Eluat		n.a.		n.a.	n.a.
pH-Wert		n.a.	7,0	n.a.	n.a.
Leitfähigkeit	μS/cm	n.a.	85	n.a.	n.a.
Arsen	mg/L	n.a.	0,0013	n.a.	n.a.
Blei	mg/L	n.a.	0,0021	n.a.	n.a.
Cadmium	mg/L	n.a.	<0,00030	n.a.	n.a.
Chrom ges.	mg/L	n.a.	0,0037	n.a.	n.a.
Kupfer	mg/L	n.a.	0,0055	n.a.	n.a.
Nickel	mg/L	n.a.	<0,0010	n.a.	n.a.
Quecksilber	mg/L	n.a.	<0,00020	n.a.	n.a.
Zink	mg/L	n.a.	<0,010	n.a.	n.a.
Cyanid ges.	mg/L	n.a.	<0,0050	n.a.	n.a.

Auftrag		11509864	11509864
Probe-Nr.		049	050
Material		Boden	Boden
Probenbezeichnung		HDB TF 3-3 Probe 2	HDB TF 3-3 Probe 1
Probemenge		ca. 500 g	ca. 500 g
Probeneingang		13.12.2011	13.12.2011
Analysenergebnisse	Einheit		
Trockenrückstand	Gew%	85,2	81,5
pH-Wert (CaCl ₂)		7,5	9,6
Arsen	mg/kg TM	5,9	5,1
Blei	mg/kg TM	202	568
Cadmium	mg/kg TM	0,37	0,69
Chrom ges.	mg/kg TM	92	205
Kupfer	mg/kg TM	13	23
Nickel	mg/kg TM	9,5	9,7
Quecksilber	mg/kg TM	<0,10	<0,10
Zink	mg/kg TM	245	371
Cyanid ges.	mg/kg TM	5,5	<1,0
Eluat		n.a.	
pH-Wert		n.a.	8,6
Leitfähigkeit	μS/cm	n.a.	114
Arsen	mg/L	n.a.	0,011
Blei	mg/L	n.a.	<0,0010
Cadmium	mg/L	n.a.	<0,00030
Chrom ges.	mg/L	n.a.	0,0070
Kupfer	mg/L	n.a.	0,0059
Nickel	mg/L	n.a.	<0,0010
Quecksilber	mg/L	n.a.	<0,00020
Zink	mg/L	n.a.	<0,010
Cyanid ges.	mg/L	n.a.	<0,0050

B-Plan 107, Bad Oldesloe

Angewandte Verfahren und Bestimmungsgrenzen

Parameter	Bestimmungs-	Einheit	Methode
	grenze		
Trockenrückstand	0,40	Gew%	DIN ISO 11465 ^a
pH-Wert (CaCl ₂)			DIN ISO 10390 ^a
Aufschluss mit Königswasser			DIN EN 13657 ^a
Arsen	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Blei	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Cadmium	0,10	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Chrom ges.	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Kupfer	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Nickel	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Quecksilber	0,10	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Zink	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Cyanid ges.	1,0	mg/kg TM	DIN ISO 17380 ^a
Eluat			DIN EN 12457-4 ^a
pH-Wert			DIN 38404 (C5) ^a
Leitfähigkeit		μS/cm	DIN EN 27888 (C8) ^a
Arsen	0,00050	mg/L	DIN EN ISO 17294-2 (E29) ^a
Blei	0,0010	mg/L	DIN EN ISO 17294-2 (E29) ^a
Cadmium	0,00030	mg/L	DIN EN ISO 17294-2 (E29) ^a
Chrom ges.	0,0010	mg/L	DIN EN ISO 17294-2 (E29) ^a
Kupfer	0,0010	mg/L	DIN EN ISO 17294-2 (E29) ^a
Nickel	0,0010	mg/L	DIN EN ISO 17294-2 (E29) ^a
Quecksilber	0,00020	mg/L	DIN EN ISO 17294-2 (E29) ^a
Zink	0,010	mg/L	DIN EN ISO 17294-2 (E29) ^a
Cyanid ges.	0,0050	mg/L	DIN EN ISO 14403 (D6) ^a

Die mit ^a gekennzeichneten Verfahren sind akkreditierte Verfahren. Die Bestimmungsgrenzen können matrixbedingt variieren.

GBA LABORGRUPPE - WISSEN WAS DRIN IST...

GBA GESELLSCHAFT FÜR BIOANALYTIK MBH

Flensburger Straße 15 • 25421 Pinneberg

GEOCONSULT Hamburg GbR Dipl.-Geol. Schulze und Dr. Schinzel Herr Dr. Schinzel

Borsteler Chaussee 85-99A, Haus 6, 3. Stock

22453 Hamburg

Prüfbericht-Nr.: 2012P507153/ 2 (ersetzt Version 1 vom 14.06.)

Auftraggeber	GEOCONSULT Hamburg GbR DiplGeol. Schulze und Dr. Schinzel
Eingangsdatum	05.06.2012
Projekt	B-Plan Bad Oldesloe
Material	Lehm
Kennzeichnung	siehe Tabelle
Auftrag	438-11
Verpackung	Honigglas
Probenmenge	ca. 250 g
Auftragsnummer	12504096
Probenahme	durch den Auftraggeber
Probentransport	durch den Auftraggeber
Labor	GBA Gesellschaft für Bioanalytik mbH
Analysenbeginn / -ende	05.06.2012 - 22.06.2012
Methoden	siehe letzte Seite
Unteraufträge	keine
Bemerkung	
Probenaufbewahrung	Wenn nicht anders vereinbart, werden Feststoffproben drei Monate und Wasserproben bis zwei Wochen nach Prüfberichtserstellung aufbewahrt.

Pinneberg, 22.06.2012

i. A. Thomas Irion

(Laborleiter)

Die Prüfergebnisse beziehen sich ausschließlich auf die genannten Prüfgegenstände. Ohne schriftliche Genehmigung der GBA darf der Prüfbericht nicht auszugsweise vervielfältigt werden.

Seite 1 von 4 zu Prüfbericht-Nr.: 2012P507153/ 2

B-Plan Bad Oldesloe

Auftrag		12504096	12504096	12504096	12504096	12504096
Probe-Nr.		001	002	003	004	005
Material		Lehm	Lehm	Lehm	Lehm	Lehm
Probenbezeichnung		Trichter 11 Probe 1	Trichter 11 Probe 2	Trichter 12 Sohle	Trichter 16 Probe 1	Trichter 16 Probe 2
Probemenge		ca. 250 g	ca. 250 g	ca. 250 g	ca. 250 g	ca. 250 g
Probeneingang		05.06.2012	05.06.2012	05.06.2012	05.06.2012	05.06.2012
Analysenergebnisse	Einheit					
Trockenrückstand	Gew%	80,9	82,8	82,5	86,2	81,9
Arsen	mg/kg TM	10	17	6,6	10	10
Blei	mg/kg TM	11100	3640	20	7650	82900
Cadmium	mg/kg TM	4,6	1,5	0,13	2,3	3,1
Chrom ges.	mg/kg TM	2750	263	41	998	1160
Kupfer	mg/kg TM	63	129	18	161	305
Nickel	mg/kg TM	19	74	20	16	12
Quecksilber	mg/kg TM	0,83	0,56	<0,10	0,44	0,34
Zink	mg/kg TM	3650	3280	68	7660	2700
Cyanid ges.	mg/kg TM	286	151	<1,0	1678	1074
HCI-Test		n.a.	n.a.	carbonatfrei	n.a.	n.a.

B-Plan Bad Oldesloe

	12504096	12504096	12504096	12504096	12504096
	006	007	800	009	010
	Lehm	Lehm	Lehm	Lehm	Lehm
	Trichter 16 Sohle	Trichter 17 Probe 1	Trichter 17 Probe 2	Trichter 17 Sohle	MP 1 Trichter 16
	ca. 250 g	ca. 250 g	ca. 250 g	ca. 250 g	ca. 250 g
	05.06.2012	05.06.2012	05.06.2012	05.06.2012	05.06.2012
Einheit					
Gew%	83,6	84,1	84,7	84,3	82,5
mg/kg TM	5,9	7,8	5,7	7,7	6,8
mg/kg TM	30	2000	14400	30	23
mg/kg TM	0,18	0,42	9,3	0,18	0,20
mg/kg TM	36	476	4360	33	27
mg/kg TM	17	681	43	16	17
mg/kg TM	21	13	11	17	16
mg/kg TM	<0,10	0,38	0,19	<0,10	<0,10
mg/kg TM	65	741	11800	65	60
mg/kg TM	<1,0	407	2815	<1,0	1,9
	carbonatfrei	n.a.	n.a.	carbonatfrei	n.a.
	Gew% mg/kg TM	006 Lehm Trichter 16 Sohle ca. 250 g 05.06.2012 Einheit Gew% 83,6 mg/kg TM 30 mg/kg TM 36 mg/kg TM 36 mg/kg TM 17 mg/kg TM 21 mg/kg TM <0,10 mg/kg TM 65 mg/kg TM 65 mg/kg TM <1,0	006 007 Lehm Lehm Trichter 16 Sohle Trichter 17 Probe 1 ca. 250 g ca. 250 g 05.06.2012 05.06.2012 Einheit 83,6 84,1 mg/kg TM 5,9 7,8 mg/kg TM 30 2000 mg/kg TM 0,18 0,42 mg/kg TM 36 476 mg/kg TM 17 681 mg/kg TM 21 13 mg/kg TM <0,10 0,38 mg/kg TM 65 741 mg/kg TM <1,0 407	006 007 008 Lehm Lehm Lehm Trichter 16 Sohle Trichter 17 Probe 1 Trichter 17 Probe 2 ca. 250 g ca. 250 g ca. 250 g 05.06.2012 05.06.2012 05.06.2012 Einheit 83,6 84,1 84,7 mg/kg TM 5,9 7,8 5,7 mg/kg TM 30 2000 14400 mg/kg TM 0,18 0,42 9,3 mg/kg TM 36 476 4360 mg/kg TM 17 681 43 mg/kg TM 21 13 11 mg/kg TM <0,10 0,38 0,19 mg/kg TM 65 741 11800 mg/kg TM <1,0 407 2815	006 007 008 009 Lehm Lehm Lehm Lehm Trichter 16 Sohle Trichter 17 Probe 1 Trichter 17 Probe 2 Trichter 17 Sohle ca. 250 g ca. 250 g ca. 250 g ca. 250 g 05.06.2012 05.06.2012 05.06.2012 05.06.2012 Einheit 83,6 84,1 84,7 84,3 mg/kg TM 5,9 7,8 5,7 7,7 mg/kg TM 30 2000 14400 30 mg/kg TM 0,18 0,42 9,3 0,18 mg/kg TM 36 476 4360 33 mg/kg TM 17 681 43 16 mg/kg TM 21 13 11 17 mg/kg TM <0,10 0,38 0,19 <0,10 mg/kg TM 65 741 11800 65 mg/kg TM <1,0 407 2815 <1,0

B-Plan Bad Oldesloe

Angewandte Verfahren und Bestimmungsgrenzen

Parameter	Bestimmungs-	Einheit	Methode
	grenze		
Trockenrückstand	0,40	Gew%	DIN ISO 11465 ^a
Aufschluss mit Königswasser			DIN EN 13657 ^a
Arsen	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Blei	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Cadmium	0,10	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Chrom ges.	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Kupfer	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Nickel	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Quecksilber	0,10	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Zink	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a
Cyanid ges.		mg/kg TM	DIN ISO 17380 ^a
HCI-Test			DIN 19682

Die mit ^a gekennzeichneten Verfahren sind akkreditierte Verfahren. Die Bestimmungsgrenzen können matrixbedingt variieren.

GBA LABORGRUPPE - WISSEN WAS DRIN IST...

GBA GESELLSCHAFT FÜR BIOANALYTIK MBH

Flensburger Straße 15 • 25421 Pinneberg

GEOCONSULT Hamburg GbR Dipl.-Geol. Schulze und Dr. Schinzel Herr Dr. Schinzel

Borsteler Chaussee 85-99A, Haus 6, 3. Stock

22453 Hamburg

Prüfbericht-Nr.: 2012P507220 / 1

Fiuldericht-Ni 2012		
Auftraggeber	GEOCONSULT Hamburg GbR DiplGeol. Schulze und Dr. Schinzel	
Eingangsdatum	05.06.2012	
Projekt	B-Plan Bad Oldesloe	
Material	Lehm	
Kennzeichnung	MP 2 Trichter 16+17	
Auftrag	438-11	
Verpackung	Schraubdeckelglas	
Probenmenge	ca. 5 kg	
Auftragsnummer	12504096	
Probenahme	durch den Auftraggeber	
Probentransport	durch den Auftraggeber	
Labor	GBA Gesellschaft für Bioanalytik mbH	
Analysenbeginn / -ende	05.06.2012 - 14.06.2012	
Methoden	siehe letzte Seite	
Unteraufträge	keine	
Bemerkung		
Probenaufbewahrung	Wenn nicht anders vereinbart, werden Feststoffproben drei Monate und Wasserproben bis zwei Wochen nach Prüfberichtserstellung aufbewahrt.	

Pinneberg, 15.06.2012

Ralf Murzen

(Geschäftsführer)

Die Prüfergebnisse beziehen sich ausschließlich auf die genannten Prüfgegenstände. Ohne schriftliche Genehmigung der GBA darf der Prüfbericht nicht auszugsweise vervielfältigt werde
Seite 1 von 5 zu Prüfbericht-Nr.: 2012

B-Plan Bad Oldesloe

Zuordnung gem. LAGA-Boden (M20, Fassung 2004) / Bodenart "Lehm / Schluff"

Auftrag		1250409	96
Probe-Nr.		011	
Material		Lehm	
Drahambaraiahnung		MP 2	
Probenbezeichnung		Trichter 16	+17
Probemenge		ca. 5 k	g
Probeneingang		05.06.20	12
Analysenergebnisse	Einheit		
Trockenrückstand	Gew%	84,9	
EOX	mg/kg TM	2,2	Z1
Kohlenwasserstoffe	mg/kg TM	<100	Z0
mobiler Anteil bis C22	mg/kg TM	<50	Z0
Cyanid ges.	mg/kg TM	8,7	Z2
Summe BTEX	mg/kg TM	<1,0	Z0
Summe LCKW	mg/kg TM	<1,0	Z0
Summe PAK (EPA)	mg/kg TM	10,2	Z2
Benzo(a)pyren	mg/kg TM	0,69	Z1
Summe PCB	mg/kg TM	n.n.	Z0
Arsen	mg/kg TM	15	Z0
Blei	mg/kg TM	310	Z2
Cadmium	mg/kg TM	0,31	Z0
Chrom ges.	mg/kg TM	51	Z0
Kupfer	mg/kg TM	29	Z0
Nickel	mg/kg TM	20	Z0
Quecksilber	mg/kg TM	<0,10	Z0
Thallium	mg/kg TM	<0,30	Z0
Zink	mg/kg TM	203	Z1
тос	Gew% TM	1,2	Z1
Eluat			
pH-Wert		8,1	Z0
Leitfähigkeit	μS/cm	86	Z0
Chlorid	mg/L	0,75	Z0
Sulfat	mg/L	4,4	Z0
Cyanid ges.	μg/L	6,0	Z1.2
Phenolindex	μg/L	<5,0	Z0
Arsen	μg/L	1,5	Z0
Blei	μg/L	1,7	Z0
Cadmium	μg/L	<0,30	Z0
Chrom ges.	μg/L	17	Z1.2
Kupfer	μg/L	2,0	Z0
Nickel	μg/L	<1,0	Z0
Quecksilber	μg/L	<0,20	Z0
Zink	μg/L	<10	Z0

B-Plan Bad Oldesloe

Auftrag		12504096	
Probe-Nr.		011	
Material		Lehm	
Probenbezeichnung		MP 2 Trichter 16+1	7
Probemenge		ca. 5 kg	
Probeneingang		05.06.2012	2
Analysenergebnisse	Einheit		
Glühverlust	Gew% TM	3,7	
Lipophile Stoffe	Gew% TM	<0,010	-
DOC	mg/L	1,8	
Cyanid I. freis.	μg/L	<10	
Fluorid	mg/L	0,30	
Gesamtgehalt an gelösten Feststoffen	mg/L	<100	
Barium	μg/L	74	
Molybdän	μg/L	1,5	
Antimon	μg/L	<1,0	
Selen	μg/L	<2,0	
Säureneutralisationskapazität	mmol/kg TM	180	

B-Plan Bad Oldesloe

Angewandte Verfahren und Bestimmungsgrenzen

Parameter	Bestimmungs-	Einheit	Methode	
	grenze			
Trockenrückstand	0,40	Gew%	DIN ISO 11465 ^a	
EOX	1,0	mg/kg TM	DIN 38414 (S17) ^a	
Kohlenwasserstoffe	100	mg/kg TM	DIN EN 14039 i.V.m. LAGA KW/04ª	
mobiler Anteil bis C22	50	mg/kg TM	DIN ISO 16703 i.V.m. LAGA KW/04ª	
Cyanid ges.	1,0	mg/kg TM	DIN ISO 17380°	
Summe BTEX	1,0	mg/kg TM	DIN ISO 22155ª	
Summe LCKW	1,0	mg/kg TM	DIN ISO 22155ª	
Summe PAK (EPA)	1,0	mg/kg TM	berechnet	
Benzo(a)pyren	0,050	mg/kg TM	Merkbl. 1, LUA-NRW (GC-MSD) ^a	
Summe PCB		mg/kg TM	berechnet	
Aufschluss mit Königswasser			DIN EN 13657 ^a	
Arsen	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a	
Blei	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a	
Cadmium	0,10	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a	
Chrom ges.	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a	
Kupfer	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a	
Nickel	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a	
Quecksilber	0,10	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a	
Thallium	0,30	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a	
Zink	1,0	mg/kg TM	DIN EN ISO 17294-2 (E29) ^a	
тос	0,050	Gew% TM	DIN ISO 10694ª	
Eluat			DIN EN 12457-4 ^a	
pH-Wert			DIN 38404 (C5)ª	
Leitfähigkeit		μS/cm	DIN EN 27888 (C8) ^a	
Chlorid	0,60	mg/L	DIN EN ISO 10304-1/-2 (D19/20)ª	
Sulfat	1,0	mg/L	DIN EN ISO 10304-1/-2 (D19/20)ª	
Cyanid ges.	0,0050	mg/L	DIN EN ISO 14403 (D6) ²	
Phenolindex	0,0050	mg/L	DIN EN ISO 14402 (H37)ª	
Arsen	0,00050	mg/L	DIN EN ISO 17294-2 (E29)ª	
Blei	0,0010	mg/L	DIN EN ISO 17294-2 (E29)ª	
Cadmium	0,00030	mg/L	DIN EN ISO 17294-2 (E29)ª	
Chrom ges.	0,0010	mg/L	DIN EN ISO 17294-2 (E29)ª	
Kupfer	0,0010	mg/L	DIN EN ISO 17294-2 (E29)ª	
Nickel	0,0010	mg/L	DIN EN ISO 17294-2 (E29) ^a	
Quecksilber	0,00020	mg/L	DIN EN ISO 17294-2 (E29) ^a	
Zink	0,010	mg/L	DIN EN ISO 17294-2 (E29) ^a	
Glühverlust	0,10	Gew% TM	DIN 18128 ^a	
Lipophile Stoffe	100	mg/kg TM	LAGA KW/04ª	
DOC	1,0	mg/L	DIN EN 1484 (H3)ª	
Cyanid I. freis.	0,010	mg/L	DIN EN ISO 14403 (D6) ^a	

B-Plan Bad Oldesloe

Angewandte Verfahren und Bestimmungsgrenzen

Parameter	Bestimmungs-	Einheit	Methode
	grenze		
Fluorid	0,15	mg/L	DIN EN ISO 10304-1/-2 (D19/20) ^a
Gesamtgehalt an gelösten Feststoffe	100	mg/L	DIN 38409-H1-2ª
Barium	0,0010	mg/L	DIN EN ISO 17294-2 (E29) ^a
Molybdän	0,0010	mg/L	DIN EN ISO 17294-2 (E29)ª
Antimon	0,0010	mg/L	DIN EN ISO 17294-2 (E29)ª
Selen	0,0020	mg/L	DIN EN ISO 17294-2 (E29)ª
Säureneutralisationskapazität		mmol/kg TM	LAGA EW 98p

9.1 Anlage: Projekt-Nr.: 438-11-A

Seite:

Protokoll Überprüfung Bombentrichter

Trichter 11 Bezeichnung des Bombentrichters: Datum der Überprüfung: 04.06.2012

Projekt: B-Plan 107, Bad Oldesloe, Kampstraße

Allgemeine Angaben

Lage:

90886,06 Hochwert: 64060.85 Rechtswert: Höhe über NN:

Öffnungsart: Gerät: Bemerkungen:

Aufgrabung, Schurf Bagger, Tieflöffel mit Schneide

Begutachtung

Durchmesser [ca. m]: max. Tiefe [m u. GOK]:

Begutachtung Kampfmittel: Begutachtung Umweltrelevanz: Herr Dietrich, KRD Herr Dr. Schinzel

Beschreibung Inhalt Bombentrichter:

0,0 m - 0,2 m u. GOK: mS, fs, gs', u', g'', h, dunkelbraun, Mutterboden aufgefüllt 0,2 m - 0,6 m u. GOK: mS, fs, gs', u', g'', Ziegel', Beton', Glas', braun, Auffüllung 0,6 m - 0,8 m u. GOK: mS, fs, gs', u', g'', h', Ziegel', Beton', Glas', Farbreste, Schlacke', Asche', Metallreste', bunt, braun, Auffüllung

Foto: Detailaufnahme Trichter 11, angetroffene Farbreste

Probenahmen / Analysenumfänge

Probenbezeichnung / -art	Datum	Entnahmetiefe [von bis m u. GOK]		Analysenumfang, Bemerkungen
Trichter 11, Probe 1	4.6.2012	ca. 0,6	ca. 0,7	Schwermetalle, Arsen, Cyanid
Trichter 11, Probe 2	4.6.2012	ca. 0,6	ca. 0,7	Schwermetalle, Arsen, Cyanid

Veranlassungen / weitere Dokumentationen

Verbleib Material aus Bombentrichter: Weitere Dokumentation / weitere Unterlagen:

Lagerung vor Ort [Halde] Wiedereinbau in Trichter Abfuhr direkte Entsorgung Abfuhr Bereitstellungsfläche

Übersichtslageplan: Lageskizze, Detaillageplan: Mischprobenahmeprotokoll: Analysenbefund:

s. Bericht 438-11		
438-11, Anl. 1.7		
s. Kurzbericht 438-11		

Freigabe Verfüllung:

Aushubmaterial wurde zwecks Abdeckung der Kontamination vor Ort wieder eingebaut

Bemerkungen:

Abbruch der Arbeiten auf Grund der angetroffenen Kontaminationen, keine Freigabe durch KRD und Fachgutachter erteilt;

Beräumung des Trichters noch ausstehend

Unterschrift:

Anlage: Projekt-Nr.: 438-11

9.2

Seite:

Protokoll Überprüfung Bombentrichter

Gerät:

Trichter 12 Bezeichnung des Bombentrichters: Datum der Überprüfung: 04.06.2012

B-Plan 107, Bad Oldesloe, Kampstraße Projekt:

Allgemeine Angaben

Lage:

91041,33 Hochwert: 64055.95 Rechtswert:

Höhe über NN:

Öffnungsart:

Bagger, Tieflöffel mit Schneide

Aufgrabung, Schurf

Bemerkungen:

Begutachtung

Durchmesser [ca. m]: ca. 9 x 9 max. Tiefe [m u. GOK]: ca. 2,5

Begutachtung Kampfmittel: Begutachtung Umweltrelevanz: Herr Dietrich, KRD Herr Dr. Schinzel

Beschreibung Inhalt Bombentrichter:

Trichterverfüllung: unterhalb der Mutterbodenauflage bis ca. 1,5 m u.GOK Verfüllung mit mS, fs, gs', u'', g'', sehr wenige Ziegelreste, braun, ohne Geruch, umgelagerter Geschiebelehm

Bodenaufbau Trichterumfeld: Mutterbodenhorizont (bis ca. 0,2 m u.GOK), Geschiebbodenhorizont mit wenigen Ziegelresten (bis ca. 0,6 m u.GOK), darunter Geschiebeboden (Geschiebelehm)

Foto: Übersichtsaufnahme Trichter 12, nach Beräumung

Probenahmen / Analysenumfänge

Probenbezeichnung / -art	Datum	Entnahmetiefe [von bis m u. GOK]		Analysenumfang, Bemerkungen
Trichter 12, Probe Sohle	4.6.2012	1,5	1,7	Schwermetalle, Arsen, Cyanid

Veranlassungen / weitere Dokumentationen

Verbleib Material aus Bombentrichter:	Weitere Dokumentation / weit	ere Unterlagen:
·	· · · · · · · · · · · · · · · · · · ·	

Lagerung vor Ort [Halde] Wiedereinbau in Trichter Abfuhr direkte Entsorgung Abfuhr Bereitstellungsfläche

Übersichtslageplan: Lageskizze, Detaillageplan: Mischprobenahmeprotokoll: Analysenbefund:

s. Bericht 438-11
438-11, Anl. 1.7
s. Kurzbericht 438-11

Freigabe Verfüllung: Freigabe zur Verfüllung mit Aushubmaterial erteilt

Bemerkungen: Sohle freigemessen, Freigabe durch KRD und Fachgutachter erteilt;

keine weiteren Maßnahmen erforderlich

GE© ONSU	ILT
-----------------	-----

Unterschrift:

9.3 Anlage: Projekt-Nr.: 438-11

Seite:

Protokoll Überprüfung Bombentrichter

Trichter 16 Bezeichnung des Bombentrichters: Datum der Überprüfung: 04.06.2012

B-Plan 107, Bad Oldesloe, Kampstraße Projekt:

Allgemeine Angaben

Lage:

91047,22 Hochwert: 64001.99 Rechtswert:

Höhe über NN:

Öffnungsart:

Gerät:

Bemerkungen:

Aufgrabung, Schurf

Bagger, Tieflöffel mit Schneide

Begutachtung

Durchmesser [ca. m]: ca. 11 x 11 max. Tiefe [m u. GOK]: ca. 3,5

Begutachtung Kampfmittel: Begutachtung Umweltrelevanz: Herr Dietrich, KRD Herr Dr. Schinzel

Beschreibung Inhalt Bombentrichter:

Trichterverfüllung: unterhalb der Mutterbodenauflage bis ca. 3,0 m u.GOK Verfüllung mit mS, fs, gs', u', g', Farbreste, Metallreste, Fassreste, Töpfe, Eimer, Munition, Handgranate, Bajonett, braun, bunt, ohne Geruch, Auffüllung Bodenaufbau Trichterumfeld: Mutterbodenhorizont (bis ca. 0,2 m u.GOK), Geschiebbodenhorizont mit wenigen Ziegelresten (bis ca. 0,6 m u.GOK), darunter Geschiebeboden (Geschiebelehm)

Foto: Übersichtsaufnahme Trichter 16, nach Beräumung

Probenahmen / Analysenumfänge

Probenbezeichnung / -art	Datum	Entnahmetiefe [von bis m u. GOK]		Analysenumfang, Bemerkungen
Trichter 16, Probe 1	4.6.2012			Schwermetalle, Arsen, Cyanid
Trichter 16, Probe 2	4.6.2012			Schwermetalle, Arsen, Cyanid
Trichter 16, Probe Sohle	4.6.2012	3,3	3,5	Schwermetalle, Arsen, Cyanid
MP 1, Trichter 16	5.6.2012			Schwermetalle, Arsen, Cyanid
MP 2, Trichter 16+17	5.6.2012			LAGA Boden, Erweiterung Deponieverordnung

Veranlassungen / weitere Dokumentationen

Verbleib Material aus Bombentrichter: Weitere Dokumentation / weitere Unterlagen:

Lagerung vor Ort [Halde] Wiedereinbau in Trichter X Abfuhr direkte Entsorgung Abfuhr Bereitstellungsfläche

Übersichtslageplan: Lageskizze, Detaillageplan: Mischprobenahmeprotokoll: Analysenbefund:

s. Bericht 438-11
438-11, Anl. 1.7
s. Kurzbericht 438-11

Freigabe Verfüllung:

Freigabe zur Verfüllung mit Aushubmaterial erteilt (Material MP 1, Trichter 16)

Bemerkungen:

Freigabe durch KRD und Fachgutachter erteilt; Entsorgung Kampfmittelfunde über KRD; keine weiteren Maßnahmen erforderlich

Unterschrift:

Anlage: Projekt-Nr.: 438-11

9.4

Seite:

Protokoll Überprüfung Bombentrichter

Trichter 17 Bezeichnung des Bombentrichters: Datum der Überprüfung: 05.06.2012

B-Plan 107, Bad Oldesloe, Kampstraße Projekt:

Allgemeine Angaben

Lage:

91057,03 Hochwert: 63988.25 Rechtswert: Höhe über NN:

Öffnungsart: Gerät: Bemerkungen:

Aufgrabung, Schurf Bagger, Tieflöffel mit Schneide

Begutachtung

Durchmesser [ca. m]: ca. 8 x 6 max. Tiefe [m u. GOK]: ca. 2,5

Begutachtung Kampfmittel: Begutachtung Umweltrelevanz: Herr Dietrich, KRD Herr Dr. Schinzel

Beschreibung Inhalt Bombentrichter:

Trichterverfüllung: unterhalb der Mutterbodenauflage bis ca. 2,5 m u.GOK Verfüllung mit mS, fs, gs', u', g', Farbreste, Metallreste, Kabel, Dachpappe, Stecker, Lautsprecher, Bügeleisen, Bombensplitter, braun, bunt, ohne Geruch, Auffüllung Bodenaufbau Trichterumfeld: Mutterbodenhorizont (bis ca. 0,2 m u.GOK), Geschiebbodenhorizont mit wenigen Ziegelresten (bis ca. 0,6 m u.GOK), darunter Geschiebeboden (Geschiebelehm)

Foto: Übersichtsaufnahme Trichter 17, nach Beräumung

Probenahmen / Analysenumfänge

Probenbezeichnung / -art	Datum	Entnahmetiefe [von bis m u. GOK]		Analysenumfang, Bemerkungen
Trichter 17, Probe 1	5.6.2012	ca. 0,4	ca. 0,5	Schwermetalle, Arsen, Cyanid
Trichter 17, Probe 2	5.6.2012	ca. 0,4	ca. 0,5	Schwermetalle, Arsen, Cyanid
Trichter 17, Probe Sohle	5.6.2012	2,5	2,6	Schwermetalle, Arsen, Cyanid
MP 2, Trichter 16+17	5.6.2012			LAGA Boden, Erweiterung Deponieverordnung

Veranlassungen / weitere Dokumentationen

Verbleib Material aus Bombentrichter: Weitere Dokumentation / weitere Unterlagen:

Lagerung vor Ort [Halde] Wiedereinbau in Trichter X Abfuhr direkte Entsorgung Abfuhr Bereitstellungsfläche

Übersichtslageplan: Lageskizze, Detaillageplan: Mischprobenahmeprotokoll: Analysenbefund:

s. Bericht 438-11
438-11, Anl. 1.7
s. Kurzbericht 438-11

Freigabe Verfüllung: Freigabe zur Verfüllung mit Aushubmaterial erteilt

Bemerkungen: Sohle freigemessen, Freigabe durch KRD und Fachgutachter erteilt;

Entsorgung Kampfmittelfunde über KRD: keine weiteren Maßnahmen erforderlich

Unterschrift:

9.5 Anlage: Projekt-Nr.: 438-11

Seite:

Protokoll Überprüfung Bombentrichter

Trichter 18 Bezeichnung des Bombentrichters: Datum der Überprüfung: 05.06.2012

B-Plan 107, Bad Oldesloe, Kampstraße Projekt:

	Alla	ıemeine	Angaben
--	------	---------	---------

Lage:

91039,70 Hochwert: 63950.64 Rechtswert: Höhe über NN:

Öffnungsart: Gerät: Bemerkungen:

Aufgrabung, Schurf Bagger, Tieflöffel mit Schneide

Begutachtung

Durchmesser [ca. m]: max. Tiefe [m u. GOK]:

Begutachtung Kampfmittel: Begutachtung Umweltrelevanz:

Herr Dietrich, KRD Herr Dr. Schinzel

Beschreibung Inhalt Bombentrichter:

Trichterverfüllung: unterhalb der Mutterbodenauflage Farbreste angetroffen, Einstellung der Arbeiten

Foto: Detailaufnahme Trichter 11, angetroffene Farbreste

Probenahmen / Analysenumfänge

Probenbezeichnung / -art	Datum	Entnahmetiefe [von bis m u. GOK]		Analysenumfang, Bemerkungen

Veranlassungen / weitere Dokumentationen

Verbleib Material aus Bombentrichter: Weitere Dokumentation / weitere Unterlagen:

Lagerung vor Ort [Halde] Wiedereinbau in Trichter Abfuhr direkte Entsorgung Abfuhr Bereitstellungsfläche

Übersichtslageplan: Lageskizze, Detaillageplan: Mischprobenahmeprotokoll: Analysenbefund:

s. Bericht 438-11 438-11, Anl. 1.7 s. Kurzbericht 438-11

Freigabe Verfüllung: Aushubmaterial wurde zwecks Abdeckung der Kontamination vor Ort wieder eingebaut

Bemerkungen: Abbruch der Arbeiten auf Grund der angetroffenen Kontaminationen,

keine Freigabe durch KRD und Fachgutachter erteilt; Beräumung des Trichters noch ausstehend

GE©ONSUL

Unterschrift:

Anlage: 10.1 Projekt-Nr.: 438-11

Seite: 1/2

Probenahmeprotokoll Bodenmischprobe in Anlehnung an LAGA PN 98

A) Allgemeine Angaben

1) Veranlasser / Auftraggeber: Stadt Bad Oldesloe, Planung und Umwelt,

Am Markt 5, D - 23843 Bad Oldelsoe

2) Betreiber / Betrieb: Grundstücksgesellschaft Claudiusstraße mbH,

Gertrud-Pardo-Weg 7, D - 22297 Hamburg

3) Landkreis / Ort / Straße:

Kreis Stormarn / Bad Oldesloe / Kampstraße

4) Objekt / Lage:

B-Plan Gebiet am südlichen Ende der Kampstraße

5) Grund der Probenahme:

Prüfung Wiedereinbaufähigkeit

6) Probenahmetag / Uhrzeit / Probenbezeichnung:

05.06.2012 / 08:00 - 10:00 Uhr / MP 1, Trichter 16

7) Probenehmer / Firma:

Dr. U. Schinzel / GeoConsult Hamburg GbR

8) Anwesende Personen:

Mitarbeiter Kampfmittelräumdienst und Fa. Klinck & Liebig

9) Herkunft des Abfalls (Anschrift):

Kampstraße, Gebiet B-Plan 107, Verfüllung von Bombentrichtern

10) Vermutete Schadstoffe / Gefährdungen:

Schwermetalle, Arsen

11) Untersuchungsstelle:

GBA, Gesellschaft für Bioanalytik mbH, Pinneberg

12) Lageskizze (Haufwerke, Probenahmepunkte usw.):

s. Anlage 1.7, Projekt 438-11

Anlage: 10.1 Projekt-Nr.: 438-11

Seite: 2/2

Probenahmeprotokoll Bodenmischprobe in Anlehnung an LAGA PN 98

B) Vor-Ort-Gegebenheiten

,					
	13)	Abfallart / Allgemeine Beschreibung: ms, fs, gs´, u´-u, g´´, h´, sehr wenige Ziegelreste / braun / ohne Geruch / erdfeucht / stichfest			
	14)	Gesamtvolumen / Lagerungsform:	ca. 150 m³ / während des Wiedereinbaus		
	15)	Lagerungsdauer:	wenige Stunden		
	16)	Einflüsse auf das Abfallmaterial:	Witterung		
	17)	Probenahmegerät und -material:	Bagger, Handschaufel		
	18)	Probenahmeverfahren:	Entnahme aus ca. 80 Einzeleinstichen		
	19)	Anzahl der			
		Einzelproben: Sammelproben:	keine keine	Mischproben: Sonderproben:	1 Stück keine
	20)	Einzelproben je Mischprobe:	keine		
	21)	Probenvorbereitungsschritte:	keine		
	22)	Probentransport / Lagerung:	PKW / keine Lagerung Kühlung: nein		
	23)	Vor-Ort-Untersuchung:	keine		
	24)	Beobachtungen bei der Probenahme	/ Bemerkungen: keine / keine		
	25)	Topographische Karte als Anhang?			
		ia: nein: X	Rechtsw	ert•	

Unterschrift Probennehmer

Hamburg, den 05.06.2012

Hochwert:

Anlage: 10.2 Projekt-Nr.: 438-11

Seite: 1/2

Probenahmeprotokoll Bodenmischprobe in Anlehnung an LAGA PN 98

A) Allgemeine Angaben

1) Veranlasser / Auftraggeber: Stadt Bad Oldesloe, Planung und Umwelt,

Am Markt 5, D - 23843 Bad Oldelsoe

2) Betreiber / Betrieb: Grundstücksgesellschaft Claudiusstraße mbH,

Gertrud-Pardo-Weg 7, D - 22297 Hamburg

3) Landkreis / Ort / Straße:

Kreis Stormarn / Bad Oldesloe / Kampstraße

4) Objekt / Lage:

B-Plan Gebiet am südlichen Ende der Kampstraße

5) Grund der Probenahme:

Deklarationsanalytik für Entsorgung

6) Probenahmetag / Uhrzeit / Probenbezeichnung:

05.06.2012 / 10:00 - 12:45 Uhr / MP 2, Trichter 16+17

7) Probenehmer / Firma:

Dr. U. Schinzel / GeoConsult Hamburg GbR

8) Anwesende Personen:

Mitarbeiter Kampfmittelräumdienst und Fa. Klinck & Liebig

9) Herkunft des Abfalls (Anschrift):

Kampstraße, Gebiet B-Plan 107, Verfüllung von Bombentrichtern

10) Vermutete Schadstoffe / Gefährdungen:

Schwermetalle, Arsen

11) Untersuchungsstelle:

GBA, Gesellschaft für Bioanalytik mbH, Pinneberg

12) Lageskizze (Haufwerke, Probenahmepunkte usw.):

s. Anlage 1.7, Projekt 438-11

Anlage: 10.2 Projekt-Nr.: 438-11

Seite: 2/2

Probenahmeprotokoll Bodenmischprobe in Anlehnung an LAGA PN 98

B) Vor-Ort-Gegebenheiten

13)	Abfallart / Allgemeine Beschreibung:					
	ms, fs, gs´, u´-u, g´´, h´, Ziegel-, Beton-, Glas-, Metall-, Farbpigment-, Asche					

Schlackereste / braun, stellenweise bunt / ohne Geruch / erdfeucht / stichfest

14) Gesamtvolumen / Lagerungsform: ca. 300 m³ / Halde

15) Lagerungsdauer: wenige Stunden

16) Einflüsse auf das Abfallmaterial: Witterung

17) Probenahmegerät und -material: Bagger, Handschaufel

18) Probenahmeverfahren: Entnahme aus ca. 100 Einzeleinstichen

19) Anzahl der

Einzelproben: keine Mischproben: 1 Stück Sammelproben: keine Sonderproben: keine

20) Einzelproben je Mischprobe: keine

21) Probenvorbereitungsschritte: keine

22) Probentransport / Lagerung: PKW / keine Lagerung Kühlung: nein

23) Vor-Ort-Untersuchung: keine

24) Beobachtungen bei der Probenahme / Bemerkungen:

keine / keine

25) Topographische Karte als Anhang?

Unterschrift Probennehmer

Hamburg, den 05.06.2012